ebook img

HYBRID PHONONS IN NANOSTRUCTURES PDF

205 Pages·2017·0.842 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview HYBRID PHONONS IN NANOSTRUCTURES

SERIESONSEMICONDUCTOR SCIENCEANDTECHNOLOGY SeriesEditors R.J.Nicholas UniversityofOxford H.Kamimura UniversityofTokyo SERIES ON SEMICONDUCTOR SCIENCE AND TECHNOLOGY 1. M.Jaros:Physicsandapplicationsofsemiconductormicrostructures 2. V.N.DobrovolskyandV.G.Litovchenko:Surfaceelectronictransport phenomenainsemiconductors 3. M.J.Kelly:Low-dimensionalsemiconductors 4. P.K.Basu:Theoryofopticalprocessesinsemiconductors 5. N.Balkan:Hotelectronsinsemiconductors 6. B.Gil:GroupIIInitridesemiconductorcompounds:physicsandapplications 7. M.Sugawara:Plasmaetching 8. M.Balkanski,R.F.Wallis:Semiconductorphysicsandapplications 9. B.Gil:Low-dimensionalnitridesemiconductors 10. L.Challis:Electron–phononinteractionsinlow-dimensionalstructures 11. V.Ustinov,A.Zhukov,A.Egorov,N.Maleev:Quantumdotlasers 12. H.Spieler:Semiconductordetectorsystems 13. S.Maekawa:Conceptsinspinelectronics 14. S.D.Ganichev,W.Prettl:Intenseterahertzexcitationofsemiconductors 15. N.Miura:Physicsofsemiconductorsinhighmagneticfields 16. A.V.Kavokin,J.J.Baumberg,G.Malpuech,F.P.Laussy:Microcavities 17. S.Maekawa,S.O.Valenzuela,E.Saitoh,T.Kimura:Spincurrent 18. B.Gil:III-nitridesemiconductorsandtheirmoderndevices 19. A.Toropov,T.Shubina:PlasmonicEffectsinMetal-Semiconductor Nanostructures 20. B.K.Ridley:HybridPhononsinNanostructures Hybrid Phonons in Nanostructures First Edition B. K. Ridley ProfessorEmeritusofPhysics,UniversityofEssex,UK 3 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©B.K.Ridley2017 Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2017 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2016946809 ISBN978–0–19–878836–2 Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY Preface Crystalline nanostructures confine electrons and quantize their energies, which effect has led to the nomenclature quantum wells, quantum wires, and quantum dots. They also confine lattice waves. In the case of acoustic modes propagating in wave guides, this confinement is well understood by classical physics. This is notthecaseforopticalmodesofvibration.Inacousticwaveguidesand,indeed, innanostructures,thenormalmodesofvibrationaredeterminedbythesatisfac- tion of the classical connection rules—continuation of particle displacement and continuityofstress—attheboundaries.Inordertosatisfytheserules,amodemay havetocombinewithamodeofdifferentpolarizationtoformahybrid.Inmany cases,alongitudinallypolarizedacoustic(LA)modemustliasewithatransversely polarizedacoustic(TA)modetoformaviablenormalmodeofthesystem.Such hybrid modes are commonplace in confining structures and have been known from the end of the nineteenth century. This is not the case for optical modes. Relative to acoustic modes, optical modes are but lately come, and their proper- ties not as well defined or understood. This lacuna has been one of the motives forwritingthisbook. An understanding of optical modes in room-temperature devices is of some importance since they are, in polar structures, the principal source of electrical resistance.Acousticmodesarealsoimportantinthatrespect,butthesharedfre- quencies between barrier and well make the confinement of acoustic modes at once more intricate and more open to simplification. On the one hand, reflec- tionandtransmissionattheboundaryleadtoarichfamilyofmodepatternsthat include guided modes and interface waves. On the other hand, as regards the electron–phononinteraction,itmaybesufficientformanypurposestodisregard theintricaciesentirelyandtreattheentireacousticspectrumasbulk-like.Thisis notaneasilyjustifiableoptionforopticalmodes,giventhedisparityoffrequency between barrier and well that is commonly encountered. In that respect, optical modes present a problem. What exactly are the mechanical connection rules? In thecaseofpolarmodes,therearetheusualelectromagneticboundaryconditions aswellasthosemysteriousrulesassociatedwiththeelasticityofthelattice.Canthe electromagneticboundaryconditionsbesufficient?Inotherwords,canthecrystal beregardedsimplyasadielectriccontinuum?Forthoseinterestedsolelyinestim- atingthestrengthoftheinteractionbetweenelectronsandpolaropticalmodes,the dielectriccontinuum(DC)modelprovidesasimpleralternativetohybridtheory, an alternative that is not without some theoretical justification. Nevertheless, a crystal is not a simple dielectric continuum. If the physics of nanostructures is toseethesemiconductorasacontinuum,itmustbeacontinuumthatpossesses both elastic and dielectric properties, inhabited by hybrid lattice vibrations, both vi Preface acousticandoptical,alongwithconfinedelectrons.Theseconstitutetheessential elementsofthenanostructuresandtheirinteractionthatwillbedescribedhere. Inevitably,suchadescriptiongeneratesmanyequations,whichmanystudents of nanostructure physics may find somewhat indigestible. As one who prefers intuition to rigour (for better or worse), and who observes somewhat distantly the purely formal mathematical approach with some admiration, I have much sympathywiththisattitude,butthestudentshouldknowthattheequationswould be much more indigestible were they to portray a truly rigorous reality that took intoaccountthenaturalanisotropyofsemiconductorcrystals.Forsimplicity,the hybrid modes that are described here are creatures of purely isotropic solids, in whichmodesarepolarizedpurelylongitudinallyorpurelytransversely.Moreover, they are all long-wavelength modes, which allow a clear distinction to be made betweenopticalandacoustic.SuchapproximationsareacceptablefortheGroups IV and III-V cubic semiconductors, but not for the hexagonal II-VI materials, whicharehighlyanisotropicand,moreover,exhibitmorethanoneopticalmode. Thebookhasbeenwrittenwithcubicsemiconductorsverymuchinmind. Some parts of this book were written during and after moving house from Essex to Herefordshire (often to the despair of my wife). I suspect it has kept me sane during what most think of as one of the most traumatic events of life. Perhapsphysicsistoberecommendedasabalmintroublesometimes.Mywife, blessher,doubtsit. Pembridge2016 Contents Acknowledgements xi Introduction 1 PreludetoPart1 6 Part1 Basics 1 AcousticModes 15 1.1 ContinuumTheory 15 1.2 EquationofMotion 16 1.3 Velocities 18 1.4 IsotropicCase 19 1.5 InhomogenousMaterial 19 1.6 Quantization 21 2 OpticalModes 24 2.1 Introduction 24 2.2 MicroscopicTheoryoftheDiamondLattice 25 2.3 DecoupledAcousticandOpticalEquations 29 2.4 Velocities 33 2.5 Isotropy 34 2.6 InhomogeneousSystem 34 3 PolarModesinZincBlende 37 3.1 PolarElements 37 3.2 PolarOpticalModes 38 3.3 InterfaceModes 41 3.4 Velocities 42 3.5 InhomogenousMaterial 43 3.6 Piezoelectricity 43 4 BoundaryConditions 46 4.1 Introduction 46 4.2 AcousticModes 46 4.3 OpticalModes 48 4.4 ElectromagneticBoundaryConditions 54 5 ScalarandVectorFields 55 5.1 Introduction 55 5.2 TheHelmholtzEquation 55 viii Contents 5.3 Cylinder 56 5.4 Sphere 57 Part2 HybridModesinNanostructures 6 Non-PolarSlab 61 6.1 BoundaryConditions 61 6.2 AcousticModes 62 6.3 OpticalModes 67 7 SingleHeterostructure 69 7.1 TheHybridModelforPolarOpticalModes 69 7.2 RemotePhonons 72 7.3 EnergyNormalization 73 7.4 ReducedBoundaryCondition 74 7.5 AcousticHybrids 75 7.6 InterfaceAcousticModes 80 8 QuantumWell 83 8.1 TripleHybrid 83 8.2 EnergyNormalization 88 8.3 ReducedBoundaryCondition 88 8.4 GeneralComments 89 8.5 BarrierModes 90 8.6 AcousticModes 91 8.7 InterfaceAcousticWaves 95 8.8 GuidedAcousticWaves 96 9 QuantumWire 97 9.1 Introduction 97 9.2 CylindricalCoordinates 98 9.3 InterfaceModes 101 9.4 HybridModesinPolarMaterial 103 9.5 AcousticStressesandStrains 106 9.6 FreeSurface 108 10 QuantumDot 110 10.1 Introduction 110 10.2 SphericalCoordinates 110 10.3 PolarDoubleHybrids 114 10.4 QuantumDiscandQuantumBox 115 Contents ix Part3 Electron–PhononInteraction 11 The Interaction between Electrons and Polar Optical PhononsinNanostructures:GeneralRemarks 119 11.1 ABriefHistory 119 11.2 Dispersion 121 11.3 CoupledModesandHotPhonons 122 12 Electrons 124 12.1 Confinement 124 12.2 ScatteringRate 128 13 ScatteringRateinaSingleHeterostructure 129 13.1 ScatteringRate 129 14 ScatteringRateinaQuantumWell 135 14.1 Preliminary 135 14.2 ScatteringRateAssociatedwithQuantumWellModes 135 14.3 ScatteringRateAssociatedwithBarrierModes 139 14.4 GeneralRemarks 140 15 ScatteringRateinQuantumWires 142 15.1 GeneralRemarks 142 15.2 ScatteringRate 142 16 TheElectron–PhononInteractioninaQuantumDot 145 16.1 Preamble 145 16.2 Electron–LatticeCoupling 145 16.3 TheExciton 148 17 CoupledModes 153 17.1 Introduction 153 17.2 Long-WavelengthModes 153 17.3 BeyondtheLong-WavelengthApproximation 156 17.4 ScreeninginQuasi-2DStructures 163 17.5 CouplingtoHybrids 170 17.6 Quasi-1DCylindricalStructures 171 17.7 Mobility 172 18 HotPhononLifetime 173 18.1 Introduction 173 18.2 Lifetime 175 18.3 ThermalConductivity 180 References 185 Index 189

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.