ebook img

Hybrid Organic-Inorganic Interfaces: Towards Advanced Functional Materials PDF

991 Pages·2018·35.448 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hybrid Organic-Inorganic Interfaces: Towards Advanced Functional Materials

HybridOrganic–InorganicInterfaces Hybrid Organic–Inorganic Interfaces TowardsAdvancedFunctionalMaterials EditedbyMarie-HeleneDelvilleandAndreasTaubert Volume1 Hybrid Organic–Inorganic Interfaces TowardsAdvancedFunctionalMaterials EditedbyMarie-HeleneDelvilleandAndreasTaubert Volume2 Editors AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Dr.Marie-HeleneDelville editors,andpublisherdonotwarrantthe UniversitedeBordeaux informationcontainedinthesebooks, InstitutdeChimiedelaMatiere includingthisbook,tobefreeoferrors. CondenseedeBordeaux(ICMCB) Readersareadvisedtokeepinmindthat CNRSUPR9048 statements,data,illustrations,procedural 87avenueduDr.A.Schweitzer detailsorotheritemsmayinadvertently 33608Pessac beinaccurate. France LibraryofCongressCardNo.:appliedfor Prof.AndreasTaubert UniversityofPotsdam BritishLibraryCataloguing-in-Publication InstituteofChemistry Data 14476Potsdam Acataloguerecordforthisbookisavail- Germany ablefromtheBritishLibrary. Cover Bibliographicinformationpublishedby fotolia/VAlex,fotolia/rafalkawa62 theDeutscheNationalbibliothek TheDeutscheNationalbibliothek liststhispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>. ©2018Wiley-VCHVerlagGmbH&Co. KGaA,Boschstr.12,69469Weinheim, Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting,microfilm,or anyothermeans–nortransmittedor translatedintoamachinelanguage withoutwrittenpermissionfromthe publishers.Registerednames,trademarks, etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-34255-6 ePDFISBN:978-3-527-80710-9 ePubISBN:978-3-527-80712-3 MobiISBN:978-3-527-80711-6 oBookISBN:978-3-527-80713-0 CoverDesign SchulzGrafik-Design, Fußgönheim,Germany Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper v ContentstoVolume1 Preface xv 1 Clay–OrganicInterfacesforDesignofFunctionalHybrid Materials 1 PilarAranda,MargaritaDarder,BerndWicklein,GioraRytwo,and EduardoRuiz-Hitzky 1.1 Introduction 1 1.1.1 ClayConcepts,Definitions,andClassification 1 1.1.2 Clay–OrganicInteractions:Clay–OrganicInterfacesand FunctionalizationofClayMinerals 4 1.1.3 Clay–OrganicMaterialsandInterfaces:DesignandPreparationof NanostructuredHybridswithFunctionalProperties 6 1.2 AnalyticalandMeasuringToolsinClay–OrganicHybridInterfaces 9 1.2.1 Composition 9 1.2.1.1 IndirectMethods 10 1.2.1.2 DirectMethods 12 1.2.2 Structure 14 1.2.2.1 VisualizationMethods 14 1.2.2.2 StructureDetermination 15 1.2.3 Activity 17 1.2.3.1 ParticleSizeoftheHybrids 18 1.2.3.2 SpecificAreaoftheHybrids 20 1.3 NanoarchitecturesfromOrganic–ClayInterfaces 21 1.3.1 Organic–InorganicInterfacesinPILCandOtherRelatedClay Nanoarchitectures 23 1.3.2 Organic–InorganicInterfacesandPorousClayHeterostructures (PCH) 26 1.3.3 Organic–InorganicInterfacestoProduceDelaminatedPorousClay Heterostructures(DPCH) 28 1.3.4 AssemblyofNanoparticlestoFibrousClaysUsingOrganic–Inorganic Interfaces 31 1.4 Clay-SupportedBiointerfacesandBiomedicalApplications 34 1.4.1 Clay-SupportedBiointerfaces 34 1.4.2 BiomedicalApplicationsofClays 38 1.4.2.1 NaturalClaysinPharmaceuticalApplications 38 vi contents 1.4.2.2 Clay-BasedHybridsforDrugDeliveryApplications 38 1.4.2.3 Clay-BasedHybridsforVaccineApplications 43 1.4.2.4 Clay-BasedHybridsinRegenerativeMedicine 44 1.5 ClayInterfacesforEnvironmentalProtection 47 1.5.1 NaturalClaysasAdsorbentsofOrganicPollutants 48 1.5.1.1 Clay-BasedHybridMaterialsasAdsorbentsofPollutants 49 1.5.1.2 EnvironmentalApplicationsofHybridMaterials 51 1.5.1.3 WaterPurificationandTreatmentofEffluents 51 1.5.1.4 FormulationsofPestManagementCompounds 53 1.6 ConcludingRemarks 54 ListofAbbreviations 56 References 58 2 HybridNanocompositesBasedonPrussianBlue-Type NanoparticlesIncludedintoPolysaccharidesMatrices 85 JérômeLong,FrançoiseQuignard,YannickGuari,EricGuibal,ThierryVincent, ChristianGuérin,LuísD.Carlos,andJouliaLarionova 2.1 Introduction 85 2.1.1 NanocompositeMaterialsBasedonCoordinationPolymersatthe Nanoscale 85 2.1.2 ChoiceofthePolysaccharidesasMatrices 89 2.2 SynthesisofthePrussianBlue-TypeNanoparticlesIncludedinthe ChitosanandtheAlginate 90 2.2.1 Step-by-StepApproachtoDesignthePrussianBlue-Type Nanocomposites 90 2.2.2 Encapsulation 95 2.3 MagneticPropertiesoftheNanocomposites 97 2.4 PhotoluminescenceoftheNanocomposites 100 2.5 MonovalentCationSorption:ApplicationforDecontamination ofCs+ 102 2.5.1 SorptionIsotherms 103 2.5.2 UptakeKinetics–DiffusionMechanisms 105 2.5.3 ModeofApplication 106 2.5.4 Applicationto137CsSorption 107 2.6 Conclusion 107 ListofAbbreviations 109 References 109 3 Self-HealingThermosettingComposites:Concepts,Chemistry, andFutureAdvances 121 JamalSeyyedMonfaredZanjani,BurcuSanerOkan,YusufMenceloglu,and MehmetYildiz 3.1 Introduction 121 3.2 Self-HealingProcessbyMicroencapsulation 122 3.2.1 Capsule-BasedSelf-HealingMechanism 122 3.2.2 CapsuleProductionTechniques 123 contents vii 3.3 Fiber-BasedSelf-HealingMechanisms 126 3.3.1 HollowGlassFibers 126 3.3.2 MicrovascularNetworks 127 3.3.3 Core–ShellElectrospunFibers 130 3.4 Self-HealingInterfacesbytheCombinationofOrganicandInorganic Reinforcements 134 3.5 ChemistryofVascular-andCapsule-BasedSelf-HealingSystems 136 3.5.1 Ring-OpeningMetathesisPolymerization 136 3.5.2 EpoxyResin-BasedHealingReaction 138 3.5.3 Poly(dimethylsiloxane)-BasedHealingReaction 140 3.5.4 Solvent-BasedHealingReactions 140 3.5.5 OtherChemicalApproaches 141 3.6 FutureAdvancesinSelf-HealingofInterphases/Interfacesin Composites 142 ListofAbbreviations 143 References 143 4 Silica–PolymerInterfaceandMechanicalReinforcementin RubberNanocomposites 151 RobertoScotti,MassimilianoD’Arienzo,BarbaraDiCredico,LucaGiannini, andFrancaMorazzoni 4.1 Introduction 151 4.2 Silica–RubberComposites 153 4.2.1 SurfaceandStructureofSilicaFiller 153 4.2.2 SilicaSurfaceModification:TheRoleofCouplingAgenttoImprove theInteractionwithRubber 155 4.2.3 Dynamic-MechanicalPropertiesofFiller–Rubber Nanocomposites 160 4.2.4 InfluenceofParticleAspectRatioontheMechanicalPropertiesof RubberNCs 163 4.3 Filler–FillerandFiller–RubberInteractionsandSilica–Rubber Interface 164 4.3.1 Filler–FillerInteractionandFillerNetworking 164 4.3.2 Filler–RubberInteraction 168 4.3.2.1 BoundRubber 169 4.3.2.2 ModelsofFiller–RubberInteractionandInterface 169 4.3.2.3 MicroscopyandSpectroscopyInvestigationsonSilica–Rubber InteractionandInterface 173 4.4 Conclusions 183 ListofAbbreviations 184 References 186 5 SustainableOrganic–InorganicInterfacesinEnergy Applications 199 RyanGuterman,JiayinYuan,LijiSobhana,PedroFardim, SusanaGarcía-Mayo,andGermanSalazar-Alvarez 5.1 Introduction 199 viii contents 5.2 Poly(IonicLiquid)-BasedHybridMaterials 200 5.2.1 PIL/CarbonNanotubeHybrids 200 5.2.2 PIL/GrapheneHybrids 202 5.2.3 PIL/MetallicNanoparticleHybrids 204 5.2.4 PIL/SilicaHybrids 206 5.3 Polysaccharide-BasedHybrids 209 5.3.1 CelluloseNanofiber/ReducedGrapheneOxide/CarbonNanotube Hybrids 209 5.3.2 LithiumTitanate/CarbonNanotube/CelluloseNanofiber Hybrids 212 5.3.3 Chitosan/PhosphorylatedGrapheneOxideHybrids 214 5.3.4 Chitosan/SnO /PANITernaryHybrids 216 2 5.4 Protein-BasedHybrids 218 5.4.1 Silk/NanoparticleHybrid 219 5.4.2 Collagen/NanoparticleHybrids 226 5.5 ConcludingRemarks 228 ListofAbbreviations 228 References 229 6 HybridConjugatedPolymer–InorganicObjects:Elaborationof NovelOrganicElectronicMaterials 241 AntoineBousquet,RogerC.Hiorns,ChristineDagron-Lartigau,and LaurentBillon 6.1 Introduction 241 6.2 PolymerBrushes:GeneralFeatures 244 6.2.1 AnchoringGroup 244 6.2.2 GraftingTechniques 245 6.2.3 StructuralPropertiesofBrushes 246 6.3 Surface-InitiatedPolymerizationofConjugatedMonomers 247 6.3.1 KumadaCatalystTransferPolycondensation 247 6.3.1.1 GeneralFeatures 247 6.3.1.2 Surface-InitiatedKumadaCatalystTransferPolycondensation: GraftingFrom 249 6.3.2 StilleCoupling 254 6.3.2.1 GeneralFeatures 254 6.3.2.2 Surface-InitiatedPolymerizationviaStilleCoupling 255 6.3.3 Suzuki–MiyauraCoupling 256 6.3.3.1 GeneralFeatures 256 6.3.3.2 Surface-InitiatedPolymerizationviaSuzukiCoupling 256 6.4 SurfaceFunctionalizationviathe“GraftingThrough” Methodology 257 6.4.1 YamamotoPolymerization 257 6.4.1.1 GeneralFeatures 257 6.4.1.2 YamamotoSurfacePolymerization 257 6.4.2 SonogashiraPolymerization 258 6.4.2.1 GeneralFeatures 258 6.4.2.2 SonogashiraSurfacePolymerization 259 contents ix 6.4.3 GilchPolymerization 260 6.4.3.1 GeneralFeatures 260 6.4.3.2 SurfacePolymerizationviaGilchCoupling 261 6.5 “GraftingOnto”CouplingTechniques 262 6.5.1 DirectSubstrate–PolymerCouplingUsingKCTP 262 6.5.2 DirectPolymer–SubstrateCouplingusingOtherPolymerization Technique 265 6.5.3 SurfaceAnchoringviaHeckCoupling 269 6.5.4 SurfaceAnchoringviaCycloaddition 271 6.5.5 SurfaceAnchoringviaEsterification/Amidification 273 6.6 ConjugatedPolymerBrushesApplications 274 6.6.1 SolarCells 274 6.6.1.1 HybridSolarCell 274 6.6.1.2 AdditivesintheActiveLayer 275 6.6.1.3 Hole/ElectronTransportingLayer 277 6.6.2 Light-EmittingDiode 278 6.6.3 Sensor 280 6.6.4 OtherApplications 280 6.7 Conclusion 281 ListofAbbreviations 282 References 284 7 HybridOrganic–InorganicNanostructuresforSpinSwitching andSpintronicApplications 301 SayaniMajumdar,GerardS´liwin´ski,andYannGarcia 7.1 Introduction 301 7.2 FundamentalsofSpintronics 304 7.2.1 SpinInjection,Transport,andDetection 304 7.2.1.1 SpinInjection 305 7.2.1.2 SpinTransportandRelaxation 306 7.2.1.3 SpinDetection 307 7.2.2 GiantandTunnelingMagnetoresistance 307 7.3 HybridOrganic–InorganicSpinValvesandMagneticTunnel Junctions 309 7.3.1 HybridSpinValves 309 7.3.2 HybridMagneticTunnelJunctions 312 7.3.3 TowardSingleMolecularDevices 314 7.4 PreparationMethodsofOrganicSemiconductorThinFilmsfor Spintronics 315 7.4.1 SingleCrystalsandThinFilmFabrication 316 7.4.2 FabricationfromSolutions 318 7.4.3 VacuumDepositionMethods 319 7.4.3.1 HotWallEpitaxy 320 7.4.3.2 PhysicalVaporTransport 321 7.4.3.3 PulsedLaserDeposition 321 7.4.3.4 Matrix-AssistedPulsedLaserEvaporation 322 7.4.4 NanoparticlesandNanofibers 325 x contents 7.4.5 Morphology-DependentSpinTransportProperties 329 7.5 InorganicFerromagnet–OrganicInterface 330 7.5.1 InterfaceSpinPolarization 330 7.5.1.1 EnergyLevelAlignmentofFMElectrode/OSC 330 7.5.1.2 HybridSpinterfaceCharacterizationTechniquesandResults 332 7.5.2 InterfaceMagnetism 334 7.6 SpinCrossoverNanomaterials 336 7.6.1 SpinCrossoverThinFilms 338 7.6.1.1 SpinCrossoverHybrids 342 7.7 ConclusionandFuturePerspective 342 ListofAbbreviations 343 References 343 8 ApplicationofSol–GelMethodtoSynthesize Organic–InorganicHybridCoatingstoMinimizeCorrosionin MetallicSubstrates 355 RitaB.FigueiraandCarlosJ.R.Silva 8.1 Introduction 355 8.2 EvolutionoftheSol–GelProcessandItsMainApplications 357 8.3 GeneralSynthesisStrategiesforHybridMaterials:Chemistry Background 361 8.4 HybridSol–GelCoatings:ApplicationsandCoatingMethods 363 8.5 OIHSol–GelCoatingsforCorrosionMitigation 373 8.5.1 OIHSol–GelCoatingsforCorrosionMitigationofIron-Based Alloys 378 8.5.2 OIHSol–GelCoatingsforCorrosionMitigationofAluminum-Based Alloys 379 8.5.3 OIHSol–GelCoatingsforCorrosionMitigationofCopper-Based Alloys 381 8.5.4 OIHSol–GelCoatingsforCorrosionMitigationofZinc-Based Alloys 381 8.6 PhysicalOIHGelMaterialsandCharacterizationofMetal/Coating InterfacebyElectrochemicalMethods 382 8.6.1 PotentiodynamicElectrochemicalTechniques 387 8.6.2 ElectrochemicalImpedanceSpectroscopyMeasurements 392 References 399 9 Gas-OrganicandGas-InorganicInterfacialEffectsin Gas/AdsorbentInteractions:TheCaseofCO /CH 2 4 Separation 413 MirthaA.O.Lourenço,JoséR.B.Gomes,andPaulaFerreira 9.1 Introduction 413 9.2 SelectiveCO CaptureAdsorbents 415 2 9.3 Organic–InorganicPorousMaterialsforCO /CH Separation 417 2 4 9.3.1 ModifiedCarbons 417 9.3.2 Metal–OrganicFrameworks 419

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.