ebook img

Human Behavior Analysis: Sensing and Understanding PDF

277 Pages·2020·8.155 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Human Behavior Analysis: Sensing and Understanding

Zhiwen Yu Zhu Wang Human Behavior Analysis: Sensing and Understanding Human Behavior Analysis: Sensing and Understanding (cid:129) Zhiwen Yu Zhu Wang Human Behavior Analysis: Sensing and Understanding ZhiwenYu ZhuWang SchoolofComputerScience SchoolofComputerScience NorthwesternPolytechnicalUniversity NorthwesternPolytechnicalUniversity Xi’an,China Xi’an,China ISBN978-981-15-2108-9 ISBN978-981-15-2109-6 (eBook) https://doi.org/10.1007/978-981-15-2109-6 ©SpringerNatureSingaporePteLtd.2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Inrecentyears,humanbehaviorsensingandunderstandingattractsalotofinterests due to various societal needs, including security, natural interfaces, gaming, affec- tivecomputing,andassistedliving.However,accuratedetectionandrecognitionof humanbehaviorisstillabigchallengethatattractsalotofresearchefforts. Traditionally,toidentifyhumanbehaviors,wefirstneedtocontinuouslycollect the sensory data from physical sensing devices (e.g., camera, GPS, and RFID), which can be either worn by humans, attached on objects, or deployed inenviron- ments. Afterwards, based on recognition algorithms or classification models, the behaviortypescanbeidentifiedsoastofacilitateupperlayerapplications.Although such traditional behavior identification approaches perform well and are widely adopted, most of them are intrusive and require specific sensing devices, raising issuessuchasprivacyanddeploymentcost. Inthismonograph,weaimtoprovideanoverviewofrecentresearchprogresson noninvasive human behavior sensing and understanding. Specifically, this mono- graphdiffersfromexistingliteratureinthefollowingaspects.Ontheonehand,we mainly focus on human behavior understanding approaches that are based on noninvasive sensing technologies, including both sensor-based and device-free approaches. On the other hand, while most existing studies are about individual behaviors,we willsystematicallyelaboratehowtounderstand human behaviorsof differentgranularities,includingnotonlyindividual-levelbehaviorsbutalsogroup- levelandcommunity-levelbehaviors. Thebookincludesfourparts.InPartI(Chaps.1and2),weintroduceandanalyze the design, implementation, and development of a typical human behavior sensing and understanding system and then give the main steps of such a system. Part II (Chaps. 3 and 4) mainly focuses on two noninvasive (i.e., sensor-based and device-free) behavior sensing approaches. In Part III (Chaps. 5–7), we elaborate our studies on the understanding of different granularity human behaviors, from individualleveltogrouplevelandcommunitylevel.Finally,inPartIV(Chap.8),we discusstheopenissuesandpossiblesolutionsinvolvedinhumanbehaviorsensing andunderstanding,followedbyaconclusiontothewholemonograph.Specifically, v vi Preface some of the contents in this monograph might be of particular interest to readers, including noninvasive human behavior sensing approaches (i.e., sensor-based and device-free), aswell astheunderstandingofdifferent granularityhumanbehaviors (i.e.,individuallevel,grouplevel,andcommunitylevel). WewouldliketothankProf.DaqingZhangattheSoftwareEngineeringInstitute ofPekingUniversity,Beijing,China;Prof.LimingChenattheSchoolofComputer Science and Informatics of De Montfort University, Leicester, UK; Prof. Xingshe ZhouattheSchoolofComputerScienceofNorthwesternPolytechnicalUniversity, Xi’an,China;andProf.BinGuoattheSchoolofComputerScienceofNorthwestern PolytechnicalUniversity,Xi’an,China.Wewouldliketothankallofthemembers of Ubiquitous Computing group of Northwestern Polytechnical University, China, fortheirvaluablediscussions,insights,andhelpfulcomments.Wewouldalsoliketo thank the staff at Springer, Ms. Celine Chang and Ms. Jane Li, for their kind help throughoutthepublicationandpreparationprocessesofthemonograph. Xi’an,China ZhiwenYu Xi’an,China ZhuWang Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 FromVision-BasedtoSensor-BasedandDevice-FreeBehavior Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Vision-BasedHumanBehaviorSensingandRecognition. . . . 2 1.1.2 Sensor-BasedHumanBehaviorSensingandRecognition.... 3 1.1.3 Device-FreeHumanBehaviorSensingandRecognition. . . 4 1.2 FromIndividualtoGroupandCommunityBehaviorRecognition. . . 5 1.3 FromPattern-BasedtoModel-BasedBehaviorRecognition. . . . . . 7 1.3.1 Pattern-BasedBehaviorRecognition. . . . . . . . . . . . . . . . . 7 1.3.2 Model-BasedBehaviorRecognition. . . . . . . . . . . . . . . . . 8 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 MainStepsofHumanBehaviorSensingandUnderstanding. . . . . . 13 2.1 SensoryDataCollection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 DataPreprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 FeatureExtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 HumanBehaviorModelingandClassification. . . . . . . . . . . . . . . 16 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Sensor-BasedBehaviorRecognition. . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Sensor-BasedBehaviorRecognitionEvolution. . . . . . . . . . . . . . . 17 3.2 BehaviorRecognitionBasedonMobileDevices. . . . . . . . . . . . . . 18 3.2.1 BehaviorSensingandUnderstandingScales. . . . . . . . . . . 19 3.2.2 BehaviorSensingandUnderstandingParadigms. . . . . . . . 20 3.3 Energy-EfficientBehaviorRecognitionUsingUbiquitousSensors. . . 21 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Device-FreeBehaviorRecognition. . . . .. . . . . . .. . . . . . .. . . . . .. . 27 4.1 TheBasicConceptofDevice-FreeBehaviorSensingand Recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 GeneralMethodology. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 vii viii Contents 4.1.2 TypicalApplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Wi-FiCSI-BasedBehaviorSensingandRecognition. . . . . . . . . . 29 4.3 Acoustic-BasedBehaviorSensingandRecognition. . . . . . . . . . . . 32 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 IndividualBehaviorRecognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1 HumanMobilityPredictionbyExploringHistoryTrajectories. . . . 37 5.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.3 SerendipitousSocialInteractionsSupportingSystem. . . . . 40 5.1.4 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 DisorientationDetectionbyMiningGPSTrajectories. . . . . . . . . . 48 5.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.3 DisorientationDetectionProblemFormulation. . . . . . . . . . 53 5.2.4 iBDD:Isolation-BasedDisorientationDetection. . . . . . . . 56 5.2.5 DisorientationTrajectoryDetectionAlgorithm. . . . . . . . . . 61 5.2.6 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 HumanComputerOperationRecognitionBasedonSmartphone. . . . 70 5.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.3.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3.3 SystemOverview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3.4 KeystrokeIdentification. . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3.5 WordCorrection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.6 Human-ComputerOperationRecognition. . . . . . . . . . . . . 80 5.3.7 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4 SwimmerLocalizationBasedonSmartphone. . . . . . . . . . . . . . . . 85 5.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.3 SystemArchitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4.4 SwimmingBehaviorRecognition. . . . . . . . . . . . . . . . . . . 88 5.4.5 SwimmerLocating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4.6 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.5 HumanIdentityRecognitionBasedonWi-FiSignals. . . . . . . . . . 98 5.5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.5.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.5.3 ProblemAnalysisandSystemFramework. . . . . . . . . . . . . 101 5.5.4 DetailedDesignofHumanIdentification. . . . . . . . . . . . . . 103 5.5.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.6 C-FMCW-BasedContactlessRespirationDetectionUsing AcousticSignals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.6.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.6.3 C-FMCW:AHigh-ResolutionDistanceEstimation Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Contents ix 5.6.4 ContactlessRespirationDetectionUsingC-FMCW withCommodityAcousticDevices. . . . . . . . . . . . . . . . . . 119 5.6.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 124 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6 GroupBehaviorRecognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.1 RecognitionofGroupMobilityLevelandGroupStructure withMobileDevices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.1.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.1.3 SystemOverview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.1.4 GroupMobilityClassification. . . . . . . . . . . . . . . . . . . . . . 144 6.1.5 GroupStructureRecognition. . . . . . . . . . . . . . . . . . . . . . 145 6.1.6 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.2 RecognitionofGroupSemanticInteractions. . . . . . . . . . . . . . . . . 154 6.2.1 SocialSemantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.2 GatheringMultimodalMeetingContent. . . . . . . . . . . . . . 156 6.2.3 RecognizingtheSocialSemantics. . . . . . . . . . . . . . . . . . . 156 6.2.4 MiningSocialSemantics. . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.5 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.3 RecognitionofGroupInteractionPatterns. . . . . . . . . . . . . . . . . . 165 6.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.3.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.3.3 HumanSemanticInteraction. . . . . . . . . . . . . . . . . . . . . . . 168 6.3.4 SystemArchitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.3.5 CollaborativeInteractionCapture. . . . . . . . . . . . . . . . . . . 170 6.3.6 MultimodalInteractionRecognition. . . . . . . . . . . . . . . . . 171 6.3.7 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.4 GroupActivityOrganizationandSuggestionwithMobileCrowd Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.4.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.4.3 GroupActivityModeling. . . . . . . . . . . . . . . . . . . . . . . . . 177 6.4.4 MobiGroupArchitecture. . . . . . . . . . . . . . . . . . . . . . . . . 180 6.4.5 PlannedGroupActivityPreparation. . . . . . . . . . . . . . . . . 182 6.4.6 RunningActivityRecognitionandSuggestion. . . . . . . . . . 188 6.4.7 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.5 PredictingActivityAttendanceinMobileSocialNetworks. . . . . . 194 6.5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6.5.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.5.3 ProblemStatementandSystemOverview. . . . . . . . . . . . . 197 6.5.4 FeatureModeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.5.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 207 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 x Contents 7 CommunityBehaviorUnderstanding. . . . . . . . . . . . . . . . . . . . . . . . 219 7.1 DiscoveringCommunitiesinMobileSocialNetworks. . . . . . . . . . 219 7.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 7.1.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.1.3 ProblemStatement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 7.1.4 MultimodeMulti-AttributeEdge-CentricCo-clustering Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7.1.5 EmpiricalStudyBasedonFoursquare. . . . . . . . . . . . . . . . 232 7.1.6 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 234 7.2 UnderstandingSocialRelationshipEvolutionbyUsing Real-WorldSensingData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.2.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.2.3 FriendshipPrediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7.2.4 SocialRelationshipEvolution. . . . . . . . . . . . . . . . . . . . . . 241 7.2.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 242 7.3 InterlinkingOff-LineandOnlineCommunities. . . . . . . . . . . . . . . 245 7.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.3.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7.3.3 AnOverviewofHSN. . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7.3.4 DetailedDesignofHSN. . . . . . . . . . . . . . . . . . . . .. . . . . 251 7.3.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 254 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 8 OpenIssuesandEmergingTrends. . . . . . . . . . . . . . . . . . . . . . . . . . 261 8.1 ResearchChallenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 8.1.1 ChallengesfromHumanBehaviorItself. . . . . . . . . . . . . . 261 8.1.2 ChallengesfromtheData. . . . . . . . . . . . . . . . . . . . . . . . . 262 8.1.3 ChallengesfromModelingandEvaluation. . . . . . . . . . . . 262 8.1.4 TenMostImportantProblems. . . . . . . . . . . . . . . . . . . . . 263 8.2 EmergingTrendsandDirections. . . . . . . . . . . . . . . . . . . . . . . . . 266 8.2.1 ComplexBehaviorRecognition. . . . . . . . . . . . . . . . . . . . 266 8.2.2 MultilevelBehaviorModelingforScalability andReusability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 8.2.3 AbnormalBehaviorRecognition. . . . . . . . . . . . . . . . . . . . 268 8.2.4 IntentorGoalRecognition. . . . . . . . . . . . . . . . . . . . . . . . 268 8.2.5 SensorDataReuseandRepurposing. . . . . . . . . . . . . . . . . 269 8.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.