Zhiwen Yu Zhu Wang Human Behavior Analysis: Sensing and Understanding Human Behavior Analysis: Sensing and Understanding (cid:129) Zhiwen Yu Zhu Wang Human Behavior Analysis: Sensing and Understanding ZhiwenYu ZhuWang SchoolofComputerScience SchoolofComputerScience NorthwesternPolytechnicalUniversity NorthwesternPolytechnicalUniversity Xi’an,China Xi’an,China ISBN978-981-15-2108-9 ISBN978-981-15-2109-6 (eBook) https://doi.org/10.1007/978-981-15-2109-6 ©SpringerNatureSingaporePteLtd.2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Inrecentyears,humanbehaviorsensingandunderstandingattractsalotofinterests due to various societal needs, including security, natural interfaces, gaming, affec- tivecomputing,andassistedliving.However,accuratedetectionandrecognitionof humanbehaviorisstillabigchallengethatattractsalotofresearchefforts. Traditionally,toidentifyhumanbehaviors,wefirstneedtocontinuouslycollect the sensory data from physical sensing devices (e.g., camera, GPS, and RFID), which can be either worn by humans, attached on objects, or deployed inenviron- ments. Afterwards, based on recognition algorithms or classification models, the behaviortypescanbeidentifiedsoastofacilitateupperlayerapplications.Although such traditional behavior identification approaches perform well and are widely adopted, most of them are intrusive and require specific sensing devices, raising issuessuchasprivacyanddeploymentcost. Inthismonograph,weaimtoprovideanoverviewofrecentresearchprogresson noninvasive human behavior sensing and understanding. Specifically, this mono- graphdiffersfromexistingliteratureinthefollowingaspects.Ontheonehand,we mainly focus on human behavior understanding approaches that are based on noninvasive sensing technologies, including both sensor-based and device-free approaches. On the other hand, while most existing studies are about individual behaviors,we willsystematicallyelaboratehowtounderstand human behaviorsof differentgranularities,includingnotonlyindividual-levelbehaviorsbutalsogroup- levelandcommunity-levelbehaviors. Thebookincludesfourparts.InPartI(Chaps.1and2),weintroduceandanalyze the design, implementation, and development of a typical human behavior sensing and understanding system and then give the main steps of such a system. Part II (Chaps. 3 and 4) mainly focuses on two noninvasive (i.e., sensor-based and device-free) behavior sensing approaches. In Part III (Chaps. 5–7), we elaborate our studies on the understanding of different granularity human behaviors, from individualleveltogrouplevelandcommunitylevel.Finally,inPartIV(Chap.8),we discusstheopenissuesandpossiblesolutionsinvolvedinhumanbehaviorsensing andunderstanding,followedbyaconclusiontothewholemonograph.Specifically, v vi Preface some of the contents in this monograph might be of particular interest to readers, including noninvasive human behavior sensing approaches (i.e., sensor-based and device-free), aswell astheunderstandingofdifferent granularityhumanbehaviors (i.e.,individuallevel,grouplevel,andcommunitylevel). WewouldliketothankProf.DaqingZhangattheSoftwareEngineeringInstitute ofPekingUniversity,Beijing,China;Prof.LimingChenattheSchoolofComputer Science and Informatics of De Montfort University, Leicester, UK; Prof. Xingshe ZhouattheSchoolofComputerScienceofNorthwesternPolytechnicalUniversity, Xi’an,China;andProf.BinGuoattheSchoolofComputerScienceofNorthwestern PolytechnicalUniversity,Xi’an,China.Wewouldliketothankallofthemembers of Ubiquitous Computing group of Northwestern Polytechnical University, China, fortheirvaluablediscussions,insights,andhelpfulcomments.Wewouldalsoliketo thank the staff at Springer, Ms. Celine Chang and Ms. Jane Li, for their kind help throughoutthepublicationandpreparationprocessesofthemonograph. Xi’an,China ZhiwenYu Xi’an,China ZhuWang Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 FromVision-BasedtoSensor-BasedandDevice-FreeBehavior Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Vision-BasedHumanBehaviorSensingandRecognition. . . . 2 1.1.2 Sensor-BasedHumanBehaviorSensingandRecognition.... 3 1.1.3 Device-FreeHumanBehaviorSensingandRecognition. . . 4 1.2 FromIndividualtoGroupandCommunityBehaviorRecognition. . . 5 1.3 FromPattern-BasedtoModel-BasedBehaviorRecognition. . . . . . 7 1.3.1 Pattern-BasedBehaviorRecognition. . . . . . . . . . . . . . . . . 7 1.3.2 Model-BasedBehaviorRecognition. . . . . . . . . . . . . . . . . 8 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 MainStepsofHumanBehaviorSensingandUnderstanding. . . . . . 13 2.1 SensoryDataCollection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 DataPreprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 FeatureExtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 HumanBehaviorModelingandClassification. . . . . . . . . . . . . . . 16 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Sensor-BasedBehaviorRecognition. . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Sensor-BasedBehaviorRecognitionEvolution. . . . . . . . . . . . . . . 17 3.2 BehaviorRecognitionBasedonMobileDevices. . . . . . . . . . . . . . 18 3.2.1 BehaviorSensingandUnderstandingScales. . . . . . . . . . . 19 3.2.2 BehaviorSensingandUnderstandingParadigms. . . . . . . . 20 3.3 Energy-EfficientBehaviorRecognitionUsingUbiquitousSensors. . . 21 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Device-FreeBehaviorRecognition. . . . .. . . . . . .. . . . . . .. . . . . .. . 27 4.1 TheBasicConceptofDevice-FreeBehaviorSensingand Recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 GeneralMethodology. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 vii viii Contents 4.1.2 TypicalApplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Wi-FiCSI-BasedBehaviorSensingandRecognition. . . . . . . . . . 29 4.3 Acoustic-BasedBehaviorSensingandRecognition. . . . . . . . . . . . 32 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 IndividualBehaviorRecognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1 HumanMobilityPredictionbyExploringHistoryTrajectories. . . . 37 5.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.3 SerendipitousSocialInteractionsSupportingSystem. . . . . 40 5.1.4 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 DisorientationDetectionbyMiningGPSTrajectories. . . . . . . . . . 48 5.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.3 DisorientationDetectionProblemFormulation. . . . . . . . . . 53 5.2.4 iBDD:Isolation-BasedDisorientationDetection. . . . . . . . 56 5.2.5 DisorientationTrajectoryDetectionAlgorithm. . . . . . . . . . 61 5.2.6 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 HumanComputerOperationRecognitionBasedonSmartphone. . . . 70 5.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.3.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3.3 SystemOverview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3.4 KeystrokeIdentification. . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3.5 WordCorrection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.6 Human-ComputerOperationRecognition. . . . . . . . . . . . . 80 5.3.7 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4 SwimmerLocalizationBasedonSmartphone. . . . . . . . . . . . . . . . 85 5.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.3 SystemArchitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4.4 SwimmingBehaviorRecognition. . . . . . . . . . . . . . . . . . . 88 5.4.5 SwimmerLocating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4.6 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.5 HumanIdentityRecognitionBasedonWi-FiSignals. . . . . . . . . . 98 5.5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.5.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.5.3 ProblemAnalysisandSystemFramework. . . . . . . . . . . . . 101 5.5.4 DetailedDesignofHumanIdentification. . . . . . . . . . . . . . 103 5.5.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.6 C-FMCW-BasedContactlessRespirationDetectionUsing AcousticSignals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.6.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.6.3 C-FMCW:AHigh-ResolutionDistanceEstimation Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Contents ix 5.6.4 ContactlessRespirationDetectionUsingC-FMCW withCommodityAcousticDevices. . . . . . . . . . . . . . . . . . 119 5.6.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 124 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6 GroupBehaviorRecognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.1 RecognitionofGroupMobilityLevelandGroupStructure withMobileDevices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.1.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.1.3 SystemOverview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.1.4 GroupMobilityClassification. . . . . . . . . . . . . . . . . . . . . . 144 6.1.5 GroupStructureRecognition. . . . . . . . . . . . . . . . . . . . . . 145 6.1.6 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.2 RecognitionofGroupSemanticInteractions. . . . . . . . . . . . . . . . . 154 6.2.1 SocialSemantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.2 GatheringMultimodalMeetingContent. . . . . . . . . . . . . . 156 6.2.3 RecognizingtheSocialSemantics. . . . . . . . . . . . . . . . . . . 156 6.2.4 MiningSocialSemantics. . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.5 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.3 RecognitionofGroupInteractionPatterns. . . . . . . . . . . . . . . . . . 165 6.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.3.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.3.3 HumanSemanticInteraction. . . . . . . . . . . . . . . . . . . . . . . 168 6.3.4 SystemArchitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.3.5 CollaborativeInteractionCapture. . . . . . . . . . . . . . . . . . . 170 6.3.6 MultimodalInteractionRecognition. . . . . . . . . . . . . . . . . 171 6.3.7 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.4 GroupActivityOrganizationandSuggestionwithMobileCrowd Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.4.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.4.3 GroupActivityModeling. . . . . . . . . . . . . . . . . . . . . . . . . 177 6.4.4 MobiGroupArchitecture. . . . . . . . . . . . . . . . . . . . . . . . . 180 6.4.5 PlannedGroupActivityPreparation. . . . . . . . . . . . . . . . . 182 6.4.6 RunningActivityRecognitionandSuggestion. . . . . . . . . . 188 6.4.7 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.5 PredictingActivityAttendanceinMobileSocialNetworks. . . . . . 194 6.5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6.5.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.5.3 ProblemStatementandSystemOverview. . . . . . . . . . . . . 197 6.5.4 FeatureModeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.5.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 207 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 x Contents 7 CommunityBehaviorUnderstanding. . . . . . . . . . . . . . . . . . . . . . . . 219 7.1 DiscoveringCommunitiesinMobileSocialNetworks. . . . . . . . . . 219 7.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 7.1.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.1.3 ProblemStatement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 7.1.4 MultimodeMulti-AttributeEdge-CentricCo-clustering Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7.1.5 EmpiricalStudyBasedonFoursquare. . . . . . . . . . . . . . . . 232 7.1.6 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 234 7.2 UnderstandingSocialRelationshipEvolutionbyUsing Real-WorldSensingData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.2.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.2.3 FriendshipPrediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7.2.4 SocialRelationshipEvolution. . . . . . . . . . . . . . . . . . . . . . 241 7.2.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 242 7.3 InterlinkingOff-LineandOnlineCommunities. . . . . . . . . . . . . . . 245 7.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.3.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7.3.3 AnOverviewofHSN. . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7.3.4 DetailedDesignofHSN. . . . . . . . . . . . . . . . . . . . .. . . . . 251 7.3.5 PerformanceEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 254 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 8 OpenIssuesandEmergingTrends. . . . . . . . . . . . . . . . . . . . . . . . . . 261 8.1 ResearchChallenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 8.1.1 ChallengesfromHumanBehaviorItself. . . . . . . . . . . . . . 261 8.1.2 ChallengesfromtheData. . . . . . . . . . . . . . . . . . . . . . . . . 262 8.1.3 ChallengesfromModelingandEvaluation. . . . . . . . . . . . 262 8.1.4 TenMostImportantProblems. . . . . . . . . . . . . . . . . . . . . 263 8.2 EmergingTrendsandDirections. . . . . . . . . . . . . . . . . . . . . . . . . 266 8.2.1 ComplexBehaviorRecognition. . . . . . . . . . . . . . . . . . . . 266 8.2.2 MultilevelBehaviorModelingforScalability andReusability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 8.2.3 AbnormalBehaviorRecognition. . . . . . . . . . . . . . . . . . . . 268 8.2.4 IntentorGoalRecognition. . . . . . . . . . . . . . . . . . . . . . . . 268 8.2.5 SensorDataReuseandRepurposing. . . . . . . . . . . . . . . . . 269 8.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270