TOAPPEARINTHEASTRONOMICALJOURNAL PreprinttypesetusingLATEXstyleemulateapjv.10/09/06 HST/NICMOSIMAGINGPOLARIMETRYOFPROTO-PLANETARYNEBULAEII: MACRO-MORPHOLOGYOFTHEDUSTSHELLSTRUCTUREVIAPOLARIZEDLIGHT TOSHIYAUETA1,KOJIMURAKAWA2,MARGARETMEIXNER3 ToappearintheAstronomicalJournal ABSTRACT The structure of the dusty circumstellar envelopes (CSEs) of proto-planetary nebulae (PPNs) reveals the mass-loss history of these sourcesand how such historiesmay differ for elliptical(SOLE) and bipolar (DU- PLEX)PPNs. TostudythePPNstructuresviadust-scatteredlinearlypolarizedstarlight,wehavecompiledthe imaging-polarimetricdataforall18evolvedstarsthathavebeenobtainedtodatewithNICMOSon-boardthe 7 HubbleSpaceTelescope(HST). This alternative imagingtechnique providesa uniqueway to probethe dis- 0 0 tributionofdustgrainsthatscatterlightaroundevolvedstars. Thenewperspectivegainedfromtheimaging- 2 polarimetric data has revealed several new aspects to the structures of PPNs. Point-symmetry is a prevalent imaging-polarimetriccharacteristic resulting fromthe azimuthaldensity gradientin the CSEs. Amongthese n point-symmetricnebulae,threedetailedmorphologicaltypescanbedifferentiatedbytheirpolarizedintensity, a I ,andpolarizationstrength,P.Whiletheazimuthaldensitygradientisreversedaboveandbelowtheequatorial J p planein opticallythicker bipolarnebulae, there is no gradientreversalin opticallythinnerelliptical nebulae. 0 Theequatorialplaneofthesystemdefinedbytheintegratedangleofpolarizationisnotnecessarilyorthogonal 3 totheaxisoftheapparentbipolarstructureinthetotalintensitydata. 1 Subjectheadings:circumstellarmatter—stars: AGBandpost-AGB—stars:individual(IRASz02229+6208, v IRAS 04296+3429, IRAS 04395+3601, IRAS 06530- 0213, IRAS 07134+1005, IRAS 0 09452+1330, IRAS 10131+3049, IRAS 10178- 5958, IRAS 10197- 5750, IRAS 8 12419- 5414, IRAS 16594- 4656, IRAS 17150- 3224, IRAS 17245- 3951, IRAS 8 17423- 1755,IRAS17441- 2411,IRAS19343+2926,AFGL2688)—stars: massloss— 1 reflectionnebulae 0 7 0 1. INTRODUCTION ever,theCSEstructuremustdeviatefromtheinitialspherical / symmetry. Therefore,theremayexistauniversalmechanism h Proto-planetary nebulae (PPNs; e.g. Kwok 1993; through which the required symmetry breaking is achieved, p VanWinckel 2003) are low to intermediate initial mass - (∼ 1- 8 M ) objects that are rapidly becoming planetary and thus, we have been performing surveys to identify the o ⊙ mechanisms that generate the initial non-sphericity in the nebulae(PNs)afterevolvingofftheasymptoticgiantbranch r CSEsofAGBstars. st (AGB). A PPN consists of a post-AGB central star and a Using mid-IR(8- 21µm) data, Meixneretal. (1999) have circumstellar envelope(CSE) of gas and dust that is created a shownthatalltheextendedPPNsintheirsampleareaxisym- : by mass loss from the central star during the AGB phase. v WhenmasslossceasesattheendoftheAGBphase,theCSE metric and fall into one of the two morphological classes: i toroidal (showing limb-brightened peaks that suggest the X physically detaches from the central star and keeps coasting presence of a dusty torus) or core/elliptical (showing an un- away duringthe PPN phase. Thus, PPNs preserve the AGB r resolved emission core surrounded by a low surface bright- a mass-losshistoryimprintedin the densitydistributionof the ness elliptical nebula). They concluded that the last stage CSEs. Therefore,PPNsarethebestastrophysicallaboratories ofAGBmasslossisshort-livedandinherentlytoroidal(i.e., inwhichweinvestigatethenatureofdustymasslossduring equatorially-enhanced),probablycoincidingwithaperiodof theAGBphase. enhancedmasslossknownasthe“superwind”phase(Renzini During the last decade, high-resolution imaging observa- 1981;Iben&Renzini1983). tions have revealed a plethora of morphologies among PNs In an optical imaging survey of PPN candidatesusing the and PPNs (see review by Balick&Frank 2002). One of the Hubble Space Telescope (HST), Uetaetal. (2000) have de- mostimportanttasksintheAGBstellarresearchistherefore tected elongated reflection nebulosities whose morphologies todeterminethemainphysicalfactorsthatcausesuchagreat appeartobifurcatedependingonthedegreeoftheequatorial morphological diversity emerging from AGB mass-loss ge- densityenhancementintheCSE.SOLE(Star-ObviousLow- ometry, which is highly spherically symmetric at the begin- level Elongated) PPNs show a bright central star embedded ningoftheAGBphase(e.g.Habing&Blommaert1993).The in a faint, elliptically-elongated nebulosity, while DUPLEX observedmorphologicaldiversitysuggestsanumberofshell (DUst-Prominent Longitudinally EXtended) PPNs exhibit a shaping processes, and various mechanisms have been pro- remarkable bipolar structure with a dust lane completely or posedtoexplaintheobservedmorphologies(Balick&Frank partiallyobscuringthecentralstar. Theseopticalmorpholog- 2002, and references therein). In all possible cases, how- ical classes appear to possess a one-to-one correspondence 1Department ofPhysicsandAstronomy, University ofDenver, Denver, to the mid-IR counterparts (core/elliptical ≈ DUPLEX and CO80208,USA;[email protected] toroidal≈SOLE). 2Max-Planck-InstitutfürRadioastronomie,AufdemHügel69,G-53121, Subsequent radiative transfer modeling of some se- Bonn,Germany lected sources (e.g. Meixneretal. 1997; Uetaetal. 2001b; 3Space Telescope Science Institute, 3700SanMartin Drive, Baltimore, Meixneretal. 2002, 2004) have shownthat(1) theobserved MD21218,USA 2 Uetaetal. PPN axisymmetry emerges during a brief stage of an en- have used data for two PSF calibration sources, HD 12088 hancedmassloss(∼3×10- 5M yr- 1)towardstheendofthe and BD+32◦3739, respectivelyin the NIC1 and NIC2 band. ⊙ AGBphase,(2)theenhancedmass-lossrateintotheequato- Table 1 summarizes the major observing parameters for all rialplaneisverymuchhigher(>∼103)thanthatintothepolar observations. Unfortunately, the data for IRAS 02168 and directions, and (3) the differences between SOLE and DU- IRAS10131(inthePOL-Lband)areaffectedbyseveresat- PLEX PPNs stem from the physical distinction between the uration and not included in the subsequent analysis. In the twotypesandcannotbeattributedsolelytotheinclinationan- following,weusetheIRASdesignationofthetargetstorefer gleeffects. Furthermore,itappearsthatSOLEandDUPLEX toeachobjectexceptforAFGL2688,whichdoesnothavean PPNs develop respectively from low and high mass progen- IRASdesignation. itors. This agrees with a recent discovery of mostly bipolar The standard set of NICMOS pipeline routines, CAL- structuresamongOH/IR-selectedsources, whicharelocated NICA (Version 3.1), in IRAF/STSDAS4 has been used in close to the galactic plane (i.e., more massive), observed by datareduction. Additionalcarehasbeentakentoremovethe HST(Sahai&SánchezContreras2004). pedestal effect (a variable quadrant bias) and the Mr. Stay- Imaging polarimetry is an alternative technique to probe puft(theamplifierringingandstreakingduetobrighttargets; theCSEstructure,inwhichthedust-scatteredlinearlypolar- Dickinsonetal.2002). Whenmultipleframesarecombined, izedcomponentoflightcanbeseparatedfromtheunpolarized wehaveusedthedrizzlepackage(Koekemoeretal.2002)in componentoflight.Gledhillandcollaborators(Gledhilletal. STSDAS. The resulting images maintain their originalpixel 2001; Gledhill 2005) have found, through UKIRT imaging- scalesof0.′′043pixel- 1and0.′′075pixel- 1respectivelyinthe polarimetricsurveysofPPNcandidates,thattheaxisymmet- NIC1andNIC2band. ricstructureofthePPNshellsfallintooneofthetwoclasses, DerivationoftheStokesparametersisdoneviathematrix shellandbipolar,dependingontheamountofdustintheCSE. inversion method (Hinesetal. 2000; Dickinsonetal. 2002). TheseclassesrespectivelycorrespondtoSOLEandDUPLEX However, the coefficients are differentfor data taken before PPNs. Theresultsofthepreviousmid-IRandopticalsurveys and after the servicing mission 3B (SM3B) in 2002 March, havethusbeenconfirmed. duringwhichtheNICMOScoolingsystemwasinstalled.This Wehaveperformednear-IRimagingpolarimetrywithHST resultedintwosetsofthephotometricconversionfactorsfor toinvestigatethedustdistributioninSOLEPPNsbymaking thepre-andpost-SM3Bdata.Wehaveusedthesecoefficients use of the polarized intensity (I ) maps. Imaging polarime- (listedin Table2 ofPaperI) whereappropriate. A morede- p tryis especiallypowerfulforthispurpose,becausethe tech- tailedaccountofdatareductionisfoundinPaperI. nique isolates dust-scattered light arising from the CSE and permitsusto probetheCSE structureeveninthevicinityof 3. RESULTSANDDISCUSSION thebrightcentralstar;CSE structureisoftenobscuredinto- 3.1. Results tal intensity (I) maps, which are affected by the enormous The imaging-polarimetric maps of evolved stars are pre- point-spread-function(PSF) of the central star. Since I de- p sented in a uniform format, following the scheme in Paper pends only on the Stokes Q andU, which are free from the I(Figs. 1to 14: Readersareencouragedtolookatthecolor unpolarizedcomponentbydefinition,itcanbeextractedeven images available on the electronic version of the paper.). In from the PSF-affected data. We have successfully demon- eachfigure,weshow(a)thetotalintensity,I,map,(b)thepo- strated that (1) SOLE PPNs consist of a hollow spheroidal larizedintensity,I ,map,(c)thepolarizationstrength,P,map shellwhichhasabuilt-inequatorialdensityenhancementand p and(d)the polarizationvectorpositionangle(P.A.), θ, map, (2)thevariabledegreeoftheequatorialdensityenhancement respectively from top to bottom. When the PSF-subtracted (i.e., the optical depth of the CSE) would result in a variety dataareavailable,theyarealsodisplayedintherightcolumn ofapparentPPN structureevenamongthisspecificgroupof (panels e–h) in addition to the original data in the left pan- opticallythinPPNs(Uetaetal.2005,hereafterPaperI). els, except for IRAS 10131 and AFGL 2688 for which the Inthepresentwork,weextendourinvestigationoftheCSE two-epoch data are presented (the earlier/later epoch on the structure via I into the realm of DUPLEX PPNs. We ap- p left/right). plythetechniqueofimagingpolarimetryininvestigatingthe TheresultsarealsosummarizedinTable2,whichliststhe structure of the bipolarlobes, in which the optical depth is measured coordinates and I and I fluxes of the object, the generallylowenoughforthemethodtowork. Todate,there p maximum P (P ), the mean P (hPi) and its standard devi- havebeenobservationsof18evolvedstarsbyHST/NICMOS max ation, and description of the I structure. The listed coordi- in the polarimetricmode. Only a small portionof the entire p nates are the center of the polarization vector pattern that is datasethasbeenpublished,andtheI datahaverarelybeen p determined by minimizing the sum of the square of the dis- utilizedtostudytheCSEdustdistribution.Therefore,weana- tance from the presumed center to a line orthogonal to the lyzealltheexistingHST/NICMOSimagingpolarimetricdata, polarization vectors. The pattern center is initially assumed especially in I , obtainedfromthe archivein orderto obtain p to be the I peak (when seen), and the center finding process more insights into the general mechanism(s) responsible for is iterated until the shift between the previous and current the structure development in the AGB wind shells. Below, centers becomes smaller than the numerical accuracy of the wedescribethedatasetandreductionprocedurebriefly(§2), analysis.Thefluxesaredeterminedbyintegratingthesurface presentanddiscusstheresultsbothindividuallyandingroups brightness over an aperture in which there is more than one (§3)andgiveasummary(§4). σ detection. P and hPi plus its standard deviation are sky max 2. OBSERVATIONSANDDATAREDUCTION determined by using an aperture which is delineated by the well-establishednebulaedgeoranapertureinwhichthereis WehavecollectedNICMOSimaging-polarimetricdatafor 13 evolved stars from the HSTarchive and combined them 4 IRAFisdistributedbytheNOAO,whichisoperated byAURAunder with our own data for 4 SOLE PPNs that have alreadybeen cooperativeagreementwithNSF.STSDASisaproductofSTScI,whichis published (Paper I). When PSF correction is necessary, we operatedbyAURAforNASA HSTNICMOSImagingPolarimetryofPPNs. II 3 morethan three σ detection. The I structure is described The I map shows a general bipolar shape of the nebula sky p p bythe overallshape, dimensions(typicallymajorand minor superposedbyclumpystructuresinthelobes,ashasbeenre- axislengths),andP.A.measuredfromthenorthtotheeast. vealedintheopticalbyTrammell,&Goodrich(2002). How- Tocomparethepresentresultswiththepreviousunresolved ever, we do not see the tips of the outflows in I . This is p polarizationmeasurements,wehavealsoperformedaperture consistentwiththeirshock-excitednature(Uetaetal.2001a). polarimetry and summarized the results with the measure- ThemorphologyofthenebulachangesdramaticallyintheP mentsofPaperIinTable3. Wehavedoneaperturephotome- map. Strong polarization is localized in several clumps dis- tryonthethreepolarizerimagesandthenusedthemeasured tributed along the south edge of the west lobe and the north fluxes from each polarizer image to compute the integrated edgeoftheeastlobe(respectivelymarkedasWandEclumps P and θ. We have varied the aperture size from ×1 to ×8 in Fig. 1c). These clumps are distributed along a curve that of FWHM in I to determine how the resulting values of P delineatesaninverseS.Theθmapshowsgeneralcentrosym- andθ behaveasafunctionoftheaperturesize. Ingeneral,P metry,andthevectorpatterncenterandtheIpeakareroughly andθ becomestableandconvergetoasinglevaluewhenthe coincident. aperturesize isequalto orlargerthanfivetimestheFWHM The structure of the lobes in I and P suggests that there p size in I. Thus, the aperture size is defined to be the mini- is more dust on one side of the lobe than the other, given mumaperturesize (an integermultipleof FWHM in I) over that the lobes are optically thin at near-IR. The regions whichtheintegratedPandθaregenerallystable. Thequoted of enhanced surface brightness in I and P spatially corre- p errorsinP(0.2to4.0%)andθ(atmost6◦)arethusthemax- spond to the shortest of the multiple outflows seen in Hα imumdeviationin ourmeasurementswhenthe aperturesize (Trammell,&Goodrich2002)7. Thisindicatesthatthese re- isvariedbeyondthe adoptedaperturesize. Thesevaluesare gions of enhanced local density are associated with the lat- consistentwiththeresultsofmorethoroughanalysesdoneby est outflows that channel recently ejected matter away from Hinesetal.(2000)5andBatcheldoretal.(2006)6. thecentralregion,providedthatmasslossproceedsatacon- Wehaveadoptedtheintegratedθasameasureoftheorien- stantvelocity. Infact,θ (83◦)isalignedwiththedirections eq tationoftheequatorialplanebecauseofthefollowingreason. of these most recent outflows delineated by strong I and P p When the optical depth in the equatorialregionis very high (∼85◦), andis notalignedwith thebipolaraxis(94◦). This (τ ≫1), there is little I because of the dilution effects due impliesthatthecurrentorientationoftheequatorialdusttorus p to multiple scattering. In this case, the integrated θ tendsto isobliquewithrespecttothebipolaraxis(byabout10◦). be parallelto the equatorialplane because of the orthogonal TheclumpinessintheoutflowstructuresoftheenhancedI p alignmentof the scattering plane with respectto the equato- andP surfacebrightnesssuggestsmass loss thatis episodic. rial plane (e.g., Whitney&Hartmann 1993; Gledhill 2005). Trammell,&Goodrich(2002)haveshownmultiplering-like However,whentheopticaldepthismarginallyhigh(∼1), θ structuresin Hα and[SII] emission as well as an arc in Hα in the equatorial region can be orthogonal to the equatorial silhouette.Thesestructuresareinlinewiththeepisodicmass planeduetoscatteringatthewallsofthebipolarlobes(e.g., loss interpretation. These clumps, however, could alterna- Johnson&Jones1991; Trammelletal. 1994;Gledhill2005; tively imply instabilities in the outflows, as pointed out also Oppenheimeretal.2005). Eveninthiscase,theintegratedθ byTrammell,&Goodrich(2002). tends to be parallel to the equatorial plane, because vectors Provided that outflows are associated with episodic mass inthelobesawayfromtheequatorialregionwouldstilldomi- ejection,theangularseparationbetweenclumpscorresponds nate.Therefore,theintegratedθismoreappropriateasamea- to the interval of mass ejection. The separations between sureoftheorientationoftheequatorialplane,andisexpressed clumps are 1.′′1 and 1.′′3 in the west lobe respectively for asθ inthe following. Note, however,thatθ is definedto thefirstandsecondclosestclumppairsfromthecentralstar, eq eq betheangleperpendiculartotheorientationoftheequatorial and 0.′′9 in the east lobe. Using 120 km s- 1 outflow veloc- plane so that the comparison between θ and P.A. of the I ity(Trammell,&Goodrich2002)andthedistanceof1.7kpc eq p surfacebrightnessdistributioncanbedoneintuitively. (Bujarrabaletal. 1988) and assuming a linear outflow, these separationstranslateto60to90years. Giventheuncertainty 3.2. IndividualSources intheexactgeometryoftheoutflowsandoftheclumps,these valuesarereasonablyclosetothevalueof40years(scaledto 3.2.1. IRAS04395+3601(AFGL618) ourchoiceofthedistance)derivedbyTrammell,&Goodrich IRAS04395(Fig.1)isaDUPLEXPPNthatisontheverge (2002) based on the separation between the ring-like struc- of becoming a PN (Westbrooketal. 1975; Calvet&Cohen turesseeninHαand[SII]. 1978). The I map shows its well known bipolar structure 3.2.2. IRAS09452+1330(IRC+10216) elongatedinthe east-westdirectiondueto multipleoutflows (Trammell,&Goodrich 2002). The lobe interior structure IRAS 09452 (Fig. 2) is one of the brightest thermal IR is more clearly revealed in the I map than in recent high- sourcesinthesky(Becklinetal.1969),andhence,oneofthe resolution ground-based near-IR maps (Uetaetal. 2001a). best-studiedC-richAGBstar. TheCSE(ofDUPLEXtype)is PSF subtraction did not improve the quality of the data be- seenasafragmentedbipolarnebulahavingfourmajoremis- cause no post-SM3B PSF data with a comparable degree of sion components in the optical and near-IR (Skinneretal. saturationisavailableandthewholePSFstructure(especially 1998; Osterbartetal. 2000; Tuthilletal. 2000; Weigeltetal. ofthespikes)isenlargedduetothebright,extendedemission 2002;Murakawaetal.2005). core. The I map shows the main nebulosity that is stretched at a P.A. of 22◦. We recognize three fragments in the north 5Inverifyingthematrixcoefficientsbymeasuringpolarizationofbothpo- larizedandunpolarizedstandards,theirmeasurementswereconsistentwithin 7Theeastclumpscorrespondtotheeasternoutflow“d”(thenorthernmost 0.3%inPand5◦inθ ofthethreeoutflows),whilethewestclumpscoincidewiththeshortestwest- 6 Possible instrumental polarization would make thematrix coefficients ernoutflow(thesouthernmostoutflowinthewest)aspresentedinFigure1 uncertainandwasfoundtocausedifferenceof0.1%inPand3◦inθ. ofTrammell,&Goodrich(2002). 4 Uetaetal. (markedasthe“NE”,“N”,and“NW”inFig.2arespectively In the I map we see the collimated bipolar lobes that are fromeasttowest[P.A.=22◦,- 19◦,&- 66◦];Osterbartetal. linearly elongated into a P.A. of 73◦. The equatorial region 2000; Tuthilletal. 2000; Weigeltetal. 2002) and an arc be- showsapinchedwaistduetoextinction. Theinnerstructure yond the south lobe (about 3′′ away from the central peak; intheIRdoesnotappearassharplyasintheoptical. Mauron&Huggins2000). TheI andPmapsclearlyrevealthephysicallythinnature p TheI mapshowstheCSEstructuremoreclearlythanthe ofthewallsofthecylindricallobes. Thedustlanethatsepa- p I map,butitsuffersfromthepolarizationghosts(highI re- ratesbothlobesismoreclearlydelineated. Moreover,I and p p gionslocatedradiallywithsemi-regularintervalsinthewest Pmapsshow,inthebipolar“skirt”region,thatthenorthwest and southeastas indicated in Fig. 2; Hinesetal. 2000). The andsoutheastwallsaremoreenhancedthanthesouthwestand northeastandsouthlobesformthemainbipolarnebulaeata northwestwalls,respectively.Furthermore,thesouthwestand P.A. of 22◦. However, it is not clear if the north and north- northeast walls appear longer than the southeast and north- west lobes also have their counterparts in the southeast be- westwalls,respectively.Theθmapindicatesaratheraligned cause of the ghosts. Murakawaetal. (2005) have detected distributionofpolarizationanglesbyashallowgradientofthe little(<10%)polarizationinthesoutheastinrecentground- image tone over the bipolarlobes (especially away fromthe ∼ basedimagingpolarimetryin theH bandand suggestedthat centralstar). Nevertheless,theθmapisgenerallycentrosym- thenorthandnorthwestlobesare causedbyleakageof light metriccenteredattheI peak. throughfissuresinthewestsideofthecentraldusttorus.The Ourmeasurementsyieldθ =80◦. ThePmapshowsanel- eq southeast ghosts are more obvious as in the P map. These lipticallyelongatedregionofweakP(<∼20%ataP.A.of78◦) ghostsarealsothesourceoftheanomalouspolarizationvec- superposedonthedustlane. ThisweakPregion,therefore,is torpatternintheotherwisecentrosymmetricθmap. almostorthogonallyorientedwiththe equatorialplane. This Our aperture polarimetry has yielded θ of 32◦. This is suggeststhatthisweakPregionmayrepresenttheregionof eq consistent with past polarimetric measurements in the opti- diluted polarization due to starlight leaking through the bi- calthroughmid-IR(Shawl&Zellner1970;Dycketal.1971; conicalopeningsofthedusttorusalignedwiththeequatorial Capps&Dyck1972;Capps&Knacke1976;Trammelletal. plane. However, the cylindrical lobes are aligned at a P.A. 1994;Serkowski&Shawl2001).Therefore,thebipolarlobes of 73◦, which is slanted by 7◦ with respect to the equatorial are obliquely oriented (10◦ off) with respect to the equato- plane. Inaddition,theeastendofthenorthwestwallandthe rialplane. Moreover,the southwestlobeappearslargerthan west end of the southeast wall (the regions marked as “en- thenortheastlobe. Thisisprobablyduetoinclinationofthe hancedskirt” in Fig. 4c) seem to be slightly curvedtowards lobes with respect to the plane of the sky: the angle of 20◦ thecentralstarwithrespecttotherestofthewalls,whichare has been determinedbased on radiativetransfer calculations very much linear. It appears as if these curved ends of the (Skinneretal.1998). wallstracetheweakPregion. Thepolarimetricdatathusuncover(1)thepoint-symmetric 3.2.3. IRAS10131+3049(CIT6) distribution of scattering matter in the cylindrical lobes (the IRAS 10131 (Fig. 3) is an IR-brightC-rich extreme AGB northwestandsoutheastwallsaremoreenhanced)and(2)the star (Ulrichetal. 1966; Cohen 1979). Schmidtetal. (2002) misalignment between the axes of the equatorial plane and have studied the CSE structure in detail using a set ofHST the collimated cylindrical lobes. As a cause for the highly datatoshowthepresenceof(1)largeIRbipolarlobes(about collimatedstructureofthe nebula,García-Larioetal. (1999) 10timeslargerthanintheoptical)inthenortheast-southwest on one hand suggested an extreme density contrast within directionand(2)multipleconcentricarcs1′′to4′′awayfrom thedusttorusthatwouldpreferentiallychanneloutflowsinto thecentralstar. Thetwo-epochmapsinFig.3showtheghosts spatially-confined regions, while Sahaietal. (1999) on the affecting all the quadrantsof the field of view since the roll otherproposedadissipativehydrodynamicinteractionofjets angleofHSTatthetwoepochsdiffersbyabout180◦. Wedo with the surroundings. Both scenarios, however, still re- notrecognizeanyinternalstructureintheCSEcoreintheI quireadditionalmechanismstodirecttheoutflows/jetsalong p andPmaps. the cylindrical lobes that are not orthogonally aligned with A series of IR polarimetry between 1967 and 1976 the equatorialplane. Alternatively, the enhancementsin the showed that θ varied between 110◦ and 180◦ (Dycketal. northwestandsoutheastwallsofthelobesmaybesimplydue 1971; Kruszewski 1971; Kruszewski,&Coyne 1976). Es- totheilluminationeffectsassuggestedfromtheshapeofthe pecially,Kruszewski,&Coyne(1976)reportedanIRpolari- weakPregion,sincethebiconicalopeningsofthecentraldust metric variability on the order of several months. Although torus (implied by the orientation of the weak P region) are Schmidtetal. (2002) have determined that there is no evi- pointedtowardstheseregionsofenhancedI andP. Thepro- p dence for temporalchangesin the polarimetricpropertiesof nounceddouble-shellstructureattheeastendofthenorthwest the CSE structurebetween the two epochs, there is some 6◦ wallandthewestendofthesoutheastwallmayberelatedto changeinθ . ThismayberelatedtotheintrinsicIRpolari- themisalignment. eq metricvariabilityoftheobject. Withrespecttothemeasured 3.2.5. IRAS10197- 5750(Hen3-404) θ values, the shell elongation is not exactly perpendicular eq (8◦to14◦offset).Ifθ variesasθ,itmaysuggestsvariations IRAS 10197 (Fig. 5) is a bipolar DUPLEX nebula sur- eq inthedustdensitydistributionneartheequatorialplaneonthe roundinganA2IstarthatisassociatedwithOHmaseremis- orderofmonths. sion (Allenetal. 1980). The optical reflection nebulosity has been imaged with HST to reveal its butterfly shape 3.2.4. IRAS10178- 5958(Hen3-401) (Sahaietal. 1999). The HSTimaging polarimetric data is IRAS10178(Fig.4)isaPPNofDUPLEXtypeassociated generally consistent with the previous imaging polarimetric with a Be post-AGB star. HSTobservations in the optical results presented by Scarrott&Scarrott (1995), but reveal andH 1-0S(1)bandshaverevealedthisobject’shighlycol- muchmoredetailedstructure. 2 limatedstructure(García-Larioetal.1999;Sahaietal.1999). TheImapexhibitssomedifferencesincomparisonwiththe HSTNICMOSImagingPolarimetryofPPNs. II 5 opticalmap. Near-IRlightdelineatesafigureSratherthana VandeSteene,&vanHoof2003). Theimaging-polarimetric butterfly shape as in the optical maps, filling the regions of dataofthisobjecthavebeenpresentedbySuetal.(2003)and heavyopticalextinctionsuch as the equatorialdustlane and us(PaperI).Since thisobjectpresentsaninterestingcase of thedark“spur”ofdust(Sahaietal.1999).TheI andPmaps a ratheropticallythinDUPLEX PPN, we brieflyre-describe p revealthenebula’spoint-symmetrybetterthantheImap:po- the structure of the nebula. This object possesses (1) an el- larizedlightismoreconcentratedontheeastedgeofthenorth liptical nebula elongated in the east-west direction (P.A. of lobe and the west edge of the south lobe. The distribution 82◦)withanadditionalprotrusiontowardsnorthwest(P.A.of ofpolarizedlightemphasizesthefigure Sappearanceof the - 60◦) and (2) the bipolar cusps in I that delineate the in- p nebula. Theθmapshowsgeneralcentrosymmetry.However, nermost edges of the equatorial density enhancement in the the I peak position does not coincide with the center of the shell. The cusps are spatially coincident with H emission 2 polarizationpattern. The location of the central star derived (Hrivnaketal.2004),whichshowsenhancementsattheedges from the polarization pattern is (α, δ) =(10h21m33.s88, of the equatorial torus in an otherwise elliptically elongated J2000 - 58◦05′47.′′7). shell (aligned with one of the optical funnels). P is slightly Theθ measurementyields34◦. Becauseofthecomplex- enhancedonthesouthedgeintheeastlobeandonthenorth eq ity of the nebula, we can define a number of axes that may edge in the west lobe. The vector pattern is generally cen- characterize the nebula structure as indicated in the I map trosymmetric. p (Fig. 5b). The lobe axis is oriented with a P.A. of (1) 23◦ θ is found to be 22◦, which is unrelated to any of the eq basedontheoverallstructureofthepolarizednebula,(2)- 3◦ observedstructure. While IRAS 16594is of DUPLEX type basedonthetipsofthefigureSappearance,(3)67◦basedon basedonitsshellstructure,thefactthatthecentralstarisvis- thestrongestI distributioninthenebula,and(4)- 15◦based ibleintheopticalandnear-IRsuggeststhattheopticaldepth p on the protrusions along the western edge of the north lobe in the equatorialregionis nearthe lower limit forDUPLEX andtheeasternedgeofthesouthlobe.Furthermore,thereisa (aboutunity). Moreover, the two-peakedmid-IRcore struc- regionofweakP(<∼20%)thatisellipticallyelongatedatthe ture found in the equatorial region (García-Hernándezetal. center of the nebula (similar to what has been seen in IRAS 2004) also indicates rather low-density enhancement. Thus, 10178). This weak P ellipse is oriented with a P.A. of 12◦ our θ measurement may have been affected by the bright eq (indicatedinthePmap,Fig.5c). PSF. Noneoftheseaxesisexactlyperpendiculartotheequatorial plane.Ifweassume,asinIRAS10178,thattheorientationof 3.2.8. IRAS17150- 3224 theweakPellipsecorrespondstothedirectionofthebiconi- IRAS17150(Fig.8)isanarchetypicalDUPLEXPPNwith calopeningsofthecentraldusttorus,thenthetorusisslanted ahighlyequatoriallyenhancedshell(Meixneretal.2002and withrespectto theequatorialplane. Insucha case, thecen- referencestherein). The I map reveals the equatorialregion traldusttorusneedstoprecesswithroughly46◦ toshapethe of the nebula, which is very much obscured in the optical nebula structure by outflows through the biconical openings (Kwoketal.1998;Uetaetal.2000). HSTimagesinnear-IR ofthetorus. bandshavebeenpresentedbySuetal.(2003). Fromthepo- 3.2.6. IRAS12419- 5414(BoomerangNebula) larizationpattern,wefindthatthepositionofthecentralillu- minationsourceis(α,δ) =(10h17m19.s81,- 32◦27′21.′′2), J2000 IRAS 12419is a very large optical bipolarreflection neb- whichis0.′′14±0.′′07offfromthecentralI peak. ula(55′′×21′′;Wegner&Glass1979),inwhichverystrong TheI andPmapsdisplaythebipolarstructureoftheneb- opticalpolarizationhasbeendetected(45- 60%inthelobes; ula,inwphichthehollownessofthelobesishighlightedbythe Taylor&Scarrott1980). TheHSTdatainFig.6showpolar- polarized light delineating the edges and polar caps. In ad- ization in the central 8′′×8′′ region of the nebula at 2µm. dition, P is even more strengthened in the north wall of the In the I map, we see an extremely faint nebulosity in the northwest lobe and in the south wall of the southeast lobe. PSF-dominated central region, which appears to be shaped Thus, there is a preferentialdistribution of scattering matter in a figurej ata P.A. of0◦. Althoughthe nebulais too faint in a figure S. The measured θ is 120◦, which is consistent eq toperformPSFsubtractioneffectively,theI mapshowsthat withthebipolaraxisataP.A.of122◦. thenear-IRlobesareelongatedalongthegeneralnorth-south direction(slightlytilted alongthe northwest-southeastquad- 3.2.9. IRAS17245- 3951 rants). IRAS 17245 (Fig. 9) is a less studied post-AGB star TheI andPmapsmarginallyshowthedistributionofpo- p (Hrivnaketal. 1999), whose less evolved nature has been larizedlightalongfour“streaks”radiallyemanatingfromthe suggested by the star’s association with OH maser emission central region (P.A. of - 170◦, - 55◦, 125◦, and 10◦ as indi- (Sevenster 2002). The polarization maps reveal the bipolar catedinFig.6b).Thesestreaksseemtodelineatetheedgesof nature of the nebula that does not possess an apparentbipo- the bipolarlobes. The θ map pattern appearsgenerallycen- larnebulosityinthetotalintensitymaps(Gledhilletal.2001; trosymmetric. Althoughthedegreeofpolarizationissimilar Suetal. 2003). While the main bipolar lobes are oriented in the near-IR and optical around the central star (12±8% alongthenorth-northeasttosouth-southwestdirection,thetail and15%,respectively),thepolarizationangleisnotthesame end of the nebula tips appears to be twisted towards oppo- (147◦ and80◦, respectively). Thisisprobablycausedbythe sitedirections: thenorthtiptonorthwestandthesouthtipto matter in the equatorial region that is optically thick in the southeast. This tendencyis seen more clearly in the P map, opticalbutopticallythininthenear-IR. inwhichthestronglypolarizedtipsarefoundataP.A.of7◦. 3.2.7. IRAS16594- 4656 Thebipolaraxisoftheoverallnebulaelongationisorientedat aP.A.of15◦,whileθ isfoundtobe21◦. Thus,thereis6◦ IRAS 16594 (Fig. 7) is an evolved post-AGB star associ- eq misalignmentbetweenthebipolaraxisandtheorientationof atedwithamulti-funneledopticalreflectionnebula,inwhich theequatorialplane. shocksstarttoshapetheshellstructure(Hrivnaketal.1999; 6 Uetaetal. 3.2.10. IRAS17423- 1755(Hen3-1475) light is consistent with their proposed shock-excited nature and suggests verylittle presence of scattering matter around IRAS 17423 (Fig. 10) is a highly collimated bipolar PPN theshockedgas. (of DUPLEX) associated with high velocity outflows (e.g. The overall polarization characteristics are generally SánchezContreras&Sahai 2001; Rieraetal. 2003). The consistent with the previous optical imaging polarimetry present data cover only part of the brighter northern lobe in (Schmidtetal. 1978). The present data show that (1) I is theNIC1band.TheImapmainlyshowsthenorthwestlobeof p concentrated in the walls of the bipolar lobes, revealing the thecentralhourglass-shapedbipolarstructurethatisinclined hollow nature of the lobes, and (2) strong P is found along with respectto the planeof the sky. The extendedknotsare the north edge of the northwest lobe and the south edge of seen in the I map (up to the NW2 knot; Rieraetal. 2003). the southeastlobe ofthe nebulathatis generallycentrosym- The I map reveals the physically thin walls of the bipolar p metric. Thenebulashapedefinesthesymmetricaxis(P.A.of lobesmoreclearly. 131◦), alongwhich CO outflowvelocityis foundto havean Strong polarization is found close to the west side of the almostconstantlatitudinalgradient(Bujarrabaletal.1998a). northlobeandtotheeastsideofthesouthlobe(inthecentral Thisaxisis,however,notalignedwithθ of151◦.Asinother “hourglass”part). ThesestrongPregionsarefoundataP.A. eq of- 54◦ (indicatedinFig.10c). Thisangleisnearlyorthogo- objects,wefindsomePenhancementsinthenebulaalongthe oppositeedgesineachlobe. naltotheequatorialplane(θ =128◦). Thereis5◦misalign- eq mentbetweentheequatorialplaneandthegeneralorientation of the bipolar lobes (at a P.A. of 133◦). Thus, these strong 3.2.13. AFGL2688(EggNebula) Pregionscanbeinterpretedastheparticularlocationsinthe AFGL 2688 (Figs. 13 and 14) is a DUPLEX PPN that is walls of the bipolar lobesthat are illuminatedby the central consideredoneofthearchetypes(Neyetal.1975;Sahaietal. star throughthe biconicalopeningsof the centraldusttorus, 1998),anditsstructurehasrecentlybeenreviewedindetailby whichisnotorthogonaltotheaxisofthebipolarlobes. Gotoetal.(2002). TheI mapsshowtheobject’swellknown 3.2.11. IRAS17441- 2411 bipolarlobesplustheconcentricarcstructureandthe“spin- dle”structurealongthedustlanebetweenthelobes(seenonly IRAS 17441 (Fig. 11) is a G0I post-AGB star associated in the NIC2 band; Fig. 14a). The I mapsdisplaythe point- p with an optical nebula of DUPLEX type (Suetal. 1998; symmetric nature of the lobes with the brightness enhance- Uetaetal. 2000). The figure S shape of the nebula is more ment appearing near the southeast corner of the north lobe pronouncedinthenear-IRthanintheoptical,asseenintheI andnearthenorthwestcornerofthesouthlobe. Itisremark- map. TheI peakcoincideswiththepolarizationpatterncen- able that the spindle structure has almost zero polarization. ter,andthus,representsthecentralsourceobscuredintheop- ThisisbecausethespindlestructureislargelyinH emission 2 tical. (Coxetal.1997;Kastneretal.2001). AsinIRAS10197,anumberofaxescanbedefinedbased In the P maps, strong polarization arises near the north- on various morphological/polarimetric characteristics. The west corner of the north lobe and near the southeast corner tipsofthefigureSshellpointtoaP.A.of- 2◦,whiletheinner ofthe southlobe. Theequatorialregionofthe nebulais op- region of the nebula, where I is the strongest, is elongated p tically thick even to near-IR light, but optically thin lobes alongaP.A.of46◦. ThePmaprevealsthewallsofthebipo- showagenerallycentrosymmetricpatternintheθ mapfrom lar lobes, which are generallyorientedtowardsa P.A. of 6◦. which the position of the illumination source is determined However, the central weak P region (<∼20%) appears elon- (Weintraubetal.2000). θ (17◦ to19◦ P.A.)isslightlymis- gated along a P.A. of 20◦. Aperture polarimetry determines aligned with respect to theeq axis of the nebula (P.A. of 12◦; θ of28◦,whichagreeswithnoneofthecharacteristicP.A.s eq Weintraubetal.2000;Gotoetal.2002). Proper-motionmea- describedabove. surements of the shell structure using the two-epoch NIC- Oppenheimeretal. (2005) have constructed a detailed MOS data have yielded the distance of 420 pc to the object model of this object using evacuated bipolar lobes with an (Uetaetal.2006). equatorialdisk by fitting their polarizationdata from optical tonear-IR.Theirmodelisquitesuccessfulinreproducingthe 3.2.14. IRAS07134+1005,06530- 0213,04296+3429,and highlypolarizednatureoftheshellaswellastheaxisymmet- (z)02229+6208 ricoverallgeometryoftheobject.However,theirmodeldoes notaddressthepoint-symmetricaspectoftheshellstructure. Imaging-polarimetriccharacteristicsoftheseSOLEobjects ThepolarizationstructureispeculiarinIRAS17441because have already been discussed in detail (Paper I). Here, we I isenhancedintheeastedgeofthenorthlobeandthewest brieflysummarizeourfindings. p edgeofthesouthlobe,butPisenhancedintheoppositeside IRAS07134(Fig.3ofPaperI)isaC-richF5Iabpost-AGB ineachlobe. star (Hrivnaketal. 1989) associated with an elliptical neb- ula(Meixneretal.1997;Dayaletal.1998;Juraetal.2000a; 3.2.12. IRAS19343+2926(M1-92) Uetaetal. 2000; Kwoketal. 2002). The shell is a slightly IRAS 19343 (Fig. 12) is an O-rich PN of DUPLEX type, prolatespheroidwithaninnercavityandabuilt-inequatorial which has been extensively studied (Trammell,&Goodrich enhancement,andhence,isnotsimply“toroidal”ashasbeen 1996;Bujarrabaletal.1998a,b, andreferencestherein). The interpreted by previous mid-IR observations (Meixneretal. bipolar lobes that are separated by the dust lane are seen 1997;Dayaletal.1998;Juraetal.2000a;Kwoketal.2002). in the I maps as have been seen in the previous observa- Inaddition,theI mapconfirmedthatthereismorematteron p tionsinatomicandH lineemission(Bujarrabaletal.1998b) theeastsideofthenebulathanthewest(Meixneretal.2004). 2 as well as in CO (Bujarrabaletal. 1994, 1998a). We do IRAS06530(Fig.4ofPaperI)isaC-richF5Ibpost-AGB not see, however, the chains of spots in the bipolar cavities star(Hrivnak&Reddy2003)withanellipticalreflectionneb- that have been identified as shock-excited clumps of mate- ula(Uetaetal.2000). Thenebulaisanearlyedge-onprolate rial(Bujarrabaletal.1998b).Theirnon-detectioninscattered spheroid with a possible inner cavity. The nebula’s density HSTNICMOSImagingPolarimetryofPPNs. II 7 structure appears such that the equatorial region of the cav- InDUPLEXPPNs,theequatorialregionscanbeveryopti- ity is filled with some matter, which manifests itself as the callythickin generalasevidencedbythepresenceofa dust density-enhanced bipolar cusp-like structure. However, the lane. Nevertheless,thebipolarlobesthemselvesareoptically totalamountofdustalongtheequatorisstillnotlargeenough thin enough that they are seen via dust-scattered starlight. tocauseself-extinctionwithintheshell(butclosetotheupper This allows us to adopt the same argumentfor SOLE PPNs limitforaSOLEnebula). that we used in Paper I and to investigate the structure of IRAS04296(Fig.5ofPaperI)isaC-richG0Iapost-AGB thelobesinDUPLEX PPNs byrelatingtheI andP surface p star(Hrivnak1995)thatisassociatedwithanX-shapedopti- brightnessestotheamountofdustalongthelineofsight.Fol- cal elongation (Sahai 1999; Uetaetal. 2000). While Sahai lowing a simple scattering angle effect (i.e., high degreesof (1999) suggested that these elongations represent a pair of polarizationareexpectedfromscatteringatnear90◦ angles) bipolar jets and a collimating disk, we interpreted that the asin PaperI, we can attribute the observedpoint-symmetric shellhadtwo,mostlikelyhollow,spheroids:one(P.A.of26◦) appearanceinthese10DUPLEXPPNstothecolumndensity isnearlyedge-onandtheother(P.A.of99◦)isinclinedwith variations along the peripheryof these nebulae. Since there respectto the planeof the sky. The two-spheroidinterpreta- is more dust on one side of a lobe than the other, we con- tion was favoredby a recentdust scattering modelingof the cludethatthereisanazimuthaldensitygradientintheselobes. object(Oppenheimeretal.2005). Asymmetricilluminationcanpotentiallyinducesimilarpoint- IRAS02229(Fig.6ofPaperI)isaC-richG8- K0Iapost- symmetricnebulamorphologiesin polarizedflux. However, AGB star (Hrivnak,&Kwok 1999) surrounded by an ellip- polarizedfluxenhancementscanoccuranywhereanddonot tical nebula of dust-scattered starlight (Uetaetal. 2000) and havetooccuratthe peripheryofthe nebulae. Thisis incon- dustemission(Kwoketal.2002). Thisobjectisthemostpe- sistentwiththeobservedtrendinthattheregionsofenhanced culiaramongthesefourSOLEnebulae. Thisnebuladoesnot polarizationoccursnear the peripheryof the nebulae. Thus, show the hollow shell structure, but has a greater equatorial weconcludethattheasymmetriceffectislesslikelythanthe enhancementalongtheminoraxis(P.A.of149◦). Thesepe- densityeffectasthecauseforthepoint-symmetricappearance culiaritieshavebeenattributedtoahigherdegreeofequatorial ofthenebulaeinpolarizedflux. enhancementin the shell and to the inclination angle of the Whiletheoverallimaging-polarimetricmorphologyofthe nebulathatismarginallyedge-on.However,ourθ measure- majority of the sample sources can be described as point- eq ment(101◦), whichisnotconsistentwiththisinterpretation, symmetric, there appear to be three distinct CSE structures appearsaffectedbythebrightstarlightinthismarginallyop- amongthosepoint-symmetricnebulae.Therearenebulaethat ticallythinnebula. showpolarizedfluxesneartheperipheryofthelobesinboth I and P (IRAS 10178, 16594, 17150, 17423, and 19343). p 3.3. Discussion As discussed for SOLE PPNs in Paper I, this structure sug- geststhatthelobesarehollowshells. Suchhollowlobescan 3.3.1. Imaging-PolarimetricCharacteristicsofDUPLEXPPNs be created by either the cessation of mass loss in the polar Having reviewed the imaging-polarimetric characteristics directions or the sweeping up of the mass-loss ejecta into of individual sources in §3.2, it now appears that the most the polar directions. Recently, García-Arrendondo&Frank prevalentcharacteristicamongtheobservedDUPLEX PPNs (2004) have shown hydro-dynamically that interactions be- is their point-symmetric appearance in the polarized surface tweenanAGBwindandajetfromanaccretiondiskcancre- brightness. This point-symmetricappearanceof these nebu- atea narrow-waistbipolarnebulaif the jetdominates. A fa- lae in polarized light stems from the fact that one side of a mouswell-collimatedbipolarPPN,M2-9(e.g.Schwarzetal. lobe shows stronger polarization than the other and that the 1997), whichis verysimilar to IRAS 10178,hasbeen inter- strongerpolarizationoccursattheoppositesidesoftheoppo- preted as a symbiotic system evolving into a PN based on a sitelobes. scenario in which outflows emanate from the accretion disk Among13DUPLEXPPNsinthiscompilation,10sources (Livio&Soker2001). Infact,IRAS19343hasbeenrecently exhibit a sign of point-symmetry while the degree of point- suggestedtobeasymbioticsystembasedonadetailedspec- symmetryvariesamongthesources.TheexceptionsareIRAS troscopic study (Arrietaetal. 2005). Furthermore, the pres- 09452, 10131, and 12419. In IRAS 10131 and 12419, the ence of precessing jets has been suggested in IRAS 17423 structureofthepolarizedsurfacebrightnessisnotdetermined and 19343 based on the presence of shock excited knots well since the polarizednebulais toocompactin the former (Bujarrabaletal. 1998b; SánchezContreras&Sahai 2001; and the polarizationflux is too weak in the latter. Thus, ne- Rieraetal. 2003). Thus, such systems may reasonably ex- glectingthetwoinconclusivecases,wehave10outof11ob- plainthemorphologiesoftheseobjectsandeventheoblique jectsthatdisplaypoint-symmetricimaging-polarimetricchar- angle of the equatorialplane suspected in some of these ob- acteristics. In IRAS 09452, the main lobe pair (the NE and jects(seebelow)maywellbeexplainedunderthepresenceof S lobes in Fig. 2) is aligned along a straight line and so do precessingjets. the otherlobes(the N andNW lobes)andthere isno appar- TherearealsonebulaethatshowPonlyneartheperiphery entindicationofpoint-symmetricvariationofpolarizationin ofthelobesbutI insidethelobes(IRAS10197,17245,and p the lobes. Thus, IRAS 09452providesan examplein which 17441).Thesenebulaearealsocharacterizedbytheverypro- theimaging-polarimetriccharacteristicsofthenebulaarede- nouncedfigureSshape. Unlikethepreviouscase,thehollow terminedby the illuminationeffects. In fact, the N and NW Pstructuredoesnotindicatethehollownessofthelobessince lobes have been shown recently to be due to scattering of Ip isdetectedalloverthelobes. ThereducedPinthemiddle stray starlight leaking through fissures in the optically thick ofthelobesisdueto increasedunpolarizedlightinthemid- toroidal core of the CSE (Murakawaetal. 2005). None of dle of the lobes. Since the central star is not very visible in these 10 DUPLEX PPNs that possess point-symmetry,how- these sources, it is notlikely thatthe centralstar contributes ever, shows obvious evidence for the illumination effects as to the increased presence of unpolarizedlight. Thus, we in- doesIRAS09452. terpret that the unpolarized component of light is increased 8 Uetaetal. in the middle of these nebulae due to multiple scattering in 3.3.3. ObliqueOrientationoftheEquatorialPlane theiropticallythickerequatorialregions. Suchenhancedop- Inthe presentwork, we haveadoptedθ , the integratedθ ticaldepthsinthevicinityofthecentralstar alongtheequa- eq overanaperture,asameasureoftheorientationoftheequa- torialplanecanbeattributed,forexample,tothepresenceof torialplane(modulo90◦tobeprecise).Inconventionalimag- adiskaroundthecentralstar. Ithasbeenshownrecentlythat ing,theorientationoftheequatorialplaneisinferredfromthe awarpedequatorialdensityenhancementcangeneratepoint- appearanceofthedustlaneand/orofthebipolarlobes.Aswe symmetriclobesbyatwo-fluidhydro-dynamicalsimulations havenotedearlier,thewaystarlightgetsscatteredintheequa- (Icke2003;Rijkhorstetal.2004). Similaritiesbetweenmod- torialregionscanbestronglyinfluencedbythelocaldensity els and the nebula structure (especially of IRAS 10197) are enhancements. Therefore,thesilhouettemorphologyofdust remarkable. lanes, especially in highspatialresolutionimagingdata, can There are yet another nebulae that display clumpiness in besusceptibletothelocaldensitydistribution. Insuchcases, thepolarizedsurfacebrightnessdistribution(IRAS04395and imaging polarimetry can alternatively constrain the orienta- AFGL 2688). As previously noted, the clumpy structure of tionoftheequatorialplanebetterthantheconventionalimag- IRAS 04395 may be due to episodic mass loss or instabili- ing. ties in the outflows. The bipolar lobes of AFGL 2688 also Wehaveseenin§3.3.2thatθ doesnotnecessarilycorre- showsignsofhollownessbuttheirI structure(especiallyof eq p spondstotheorientationoftheapparentdustlaneseenintheI thenorthernlobe)isclumpy,andtherefore,AFGL2688may data.Among13DUPLEXPPNs,wehavefoundin10sources belongto the previousgroup. However, noneof the sources that the discrepancy between θ and the orientation of the in the previous group shows the presence of the concentric eq bipolaraxisismorethanthe quotederror,assumingthatthe arcs as in AFGL 2688. Thus, AFGL 2688 may be a very uncertaintyinthebipolaraxisorientationis∼2◦.Thetwoan- uniqueobject. Althoughthe nebulastructureis inconclusive glesareequalwithinerrorsinonecase(IRAS17150).Intwo duetoitscompactness,IRAS10131mayberelatedtoAFGL casesθ isnotreliablyfixedprobablyduetothebrightcentral 2688becauseIRAS10131alsoshowssomearcsintheCSE eq starandfaintpolarizedsurfacebrightnesses(IRAS12419and (Schmidtetal.2002). 16594). Inthe 10 obliquecases, however,the determination of the orientationof the bipolar axis from the I structure is 3.3.2. SOLEandDUPLEXMorphologies p somewhatsubjective:the2◦uncertaintymaybeinappropriate In this section we comparethe morphologicalcharacteris- forthreecases(IRAS17245,IRAS17423,andAFGL2688). tics of SOLE and DUPLEX PPNs in this the most complete Evenso, therearestillsevensourcesinwhichtheequatorial compendium of imaging-polarimetric data for PPNs taken planeismorethan∼10◦ obliquefromtheperpendicularori- withHSTincludingdatapresentedinPaperI.InPaperI,we entation with respect to the bipolar axis, and there are more have shown that (1) optically thin SOLE PPNs consist of a thantwiceasmanyobliquecasesasorthogonalcases. hollowspheroidalshellwith abuilt-inequatorialdensityen- Evenifwetakeastricterstanceonthesubjectivityindefin- hancement,whichmanifestsitselfasthetoroidalstructureand ingthebipolaraxisandonourinformalerroranalysisinde- (2)thereisarangeofopticaldepths,whichcaninfluencethe rivingθ ,therearecasesinwhichtheobliqueangleismore eq observed morphological traits even among SOLE CSEs. In than 20◦ (IRAS 17441 and 19343). This issue needs to be the presentwork, we have concludedthat there exist the az- investigatedfurtherinfutureasitmayberelatedtothemech- imuthaldensitygradientinadditiontoequatorialdensityen- anisms to generate the equatorial density enhancement and hancementsinthebipolarlobesofopticallythickerDUPLEX bipolarlobes. PPNs. The distinction between SOLE and DUPLEX PPNs was 4. SUMMARY initiallyproposedbasedprimarilyonthepresence/absenceof We have presented a compendium of near-IR imaging- the optically thick dust lane (Uetaetal. 2000). The present polarimetric data of evolved star CSEs that have been ob- imagingpolarimetryprovidesan alternativemeansto differ- tained with HST/NICMOS to date, in order to study polar- entiatethesetwomorphologicaltypes. Aswehavereviewed ization characteristics of these CSEs, especially of optically in $ 3.3.1, we have founda prevalentmorphologicalfeature thicker bipolar DUPLEX PPNs. The data have shown that -point-symmetryinthesurfacebrightnessdistributionofpo- theirpoint-symmetricappearanceisprevalent(seenin10out larizedflux.Thispoint-symmetricappearanceisprobablydue of 11objects). Since the prevalentpoint-symmetrydoesnot totheazimuthaldensitygradientbeingreversedintheoppos- seemtobeduetotheilluminationeffectsinalmostallcases inglobesaboveandbelowtheequatorialplane. Ontheother (exceptforone),wehaveconcludedthattheobservedpoint- hand,inSOLEPPNsthereisnoreversaloftheazimuthalden- symmetryisduetothepresenceoftheazimuthaldensitygra- sity gradientaboveand belowtheequatorialplane, although dientintheCSEs. the azimuthaldensity gradientis present. The best example These point-symmetric nebulae can be grouped into three forthisisIRAS07134presentedinPaperI,inwhichthepres- based on the detailed morphologies. The first group con- enceoftheazimuthaldensitygradienthasbeenshowninthe sistsofobjectsthatshowpolarizedfluxesneartheperiphery dustandCOgasdistributioninitsshell(Meixneretal.2004). of the lobes in both I and P (IRAS 10178, 16594, 17150, p Thus, it appears that mechanisms that generate a reversal 17423,and19343). ByusingthesameargumentasinPaper in the azimuthal density gradient in the opposite lobes are I,wesuggestthatthebipolarlobesinthesesourcesarehollow related to the fundamental nature of the DUPLEX nebulae shells. Thesecondgroupconsistsofobjectsthatare charac- whilethesemechanismsdonotoperateintheSOLEnebulae. terized by the very pronounced figure S shape and show P Therefore,wepostulatethattheemergenceofthereversalin only near the periphery of the lobes but I inside the lobes p theazimuthaldustdensitydistributionisdirectlylinkedtothe (IRAS10197,17245,and17441). SincethereducedPinthe origin of the morphological bifurcation between SOLE and middleofthenebulaisduetotheincreasedunpolarizedlight DUPLEXPPNs. However,itisstillinconclusiveatthispoint inthenebula,weinterpretthatmultiplescatteringtakesplace whatcausesthisreversal. intherelativelydenseequatorialregionsinthesesources.The HSTNICMOSImagingPolarimetryofPPNs. II 9 last group is characterized by their clumpy nebulae (IRAS than20◦ (IRAS17441and19343). Therefore,wehavecon- 04395 and AFGL 2688) that may be due to episodic mass cluded that the occurrence of the oblique orientation of the lossorinstabilitiesintheoutflows. WhilethelobesofAFGL equatorial plane with respect to the bipolar axis is real and 2688 show similarities to the second group, the presence of thatthisissueneedstobeinvestigatedfurtherinfuture. theconcentricarcsmakesitratherunique. IRAS10131may berelatedtoAFGL2688becauseofthepresenceofarcs. We have found that the ways in which the azimuthalden- ThisresearchisbasedonobservationswiththeNASA/ESA sitygradientismanifestedinSOLEandDUPLEXPPNsare HubbleSpaceTelescope,obtainedattheSpaceTelescopeSci- verydistinct: the directionof the azimuthaldensity gradient ence Institute (STScI),which is operatedby the Association inDUPLEXPPNsisreversedintheopposinglobesaboveand ofUniversitiesforResearchinAstronomy,Inc.(AURA)un- belowtheequatorialplanewhereassuchareversalisnotseen der NASA contract No. NAS 5-26555. Authors acknowl- inSOLEPPNs. Themostprobableexplanationforthisseems edge financial support by NASA STI 9377.05-A. Ueta also to be the presence of precessing outflows into the opposite acknowledge partial support from the project IAP P5/36 fi- directions and/or magnetic field that is reversed its polarity nancedbyFederalServicesforScientific,TechnicalandCul- above and below the equatorial plane. We have also found turalAffairs of the Belgian State and the Universities Space indicationsthattheequatorialplaneofthesystem(definedby Research Association SOFIA (StratosphericObservatoryfor θ ) is notnecessarily orthogonalto the axis of the apparent InfraredAstronomy)office atNASA AmesResearch Center eq bipolarstructureinthetotalintensitydata(atleast7outof10 aswellasaUSNationalResearchCouncilResearchAssoci- sources). Therearecasesinwhichtheobliqueangleismore ateshipAwardandaNASAPostdoctoralProgramAward. REFERENCES Allen,D.A.,Hyland,A.R.,&Caswell,J.L.1980,MNRAS,192,505 Koekemoer, A. M., et al. 2002, “HST Dither Handbook”, Version 2.0 Arrieta,A.,Torres-Peimbert,S.,&Georgiev,L.2005,ApJ,623,252 (Baltimore:STScI) Balick,B.,&Frank,A.2002,ARA&A,40,439 Kruszewski,A.1971,AJ,76,576 Batcheldor, D., Robinson, A., Axon, D., Hines, D. C., Sparks, W., & Kruszewski,A.,&Coyne,G.V.1976,AJ,81,641 Tadhunter,C.2006,PASP,118,642 Kwok,S.1993,ARA&A,31,63 Becklin,E.E.,Frogel,J.A.,Hyland,A.R.,Kristian,J.,&Neugebauer,G. Kwok,S.,Su,K.Y.L.,Hrivnak,B.J.1998,ApJ,501,L117 1969,ApJ,158,L133 Kwok,S.,Volk,K.,&Hrivnak,B.J.2002,ApJ,573,720 Bujarrabal,V.,Alcolea,J.,&Neri,R.1998,ApJ,504,915 Livio,M.,&Soker,N.2001,ApJ,552,685 Bujarrabal,V.,Alcolea,J.,Neri,R.,&Grewing,M.1994,ApJ,436,L169 Mauron,N.,&Huggins,P.J.2000,A&A,359,707 Bujarrabal,V.,Alcolea,J.,Sahai,R.,Zamorano,J.,&Zijlstra,A.1998,A&A, Meixner,M.,Skinner,C.J.,Graham,J.R.,Keto,E.,Jerrigen,J.G.,&Arens, 331,361 J.F.1997,ApJ,482,897 Bujarrabal,V,Gómez-González,J.,Bachiller,R.,&Martín-Pintado,J.1988, Meixner, M., Ueta, T., Dayal, A., Hora, J. L., Fazio, G., Hrivnak, B. J., A&A,204,242 Skinner,C.J.,Hoffmann,W.F.,&Deutsch,L.K.1999,ApJS,122,221 Calvet,N.,&Cohen,M.1978,MNRAS,182,687 Meixner,M.,Ueta,T.,Bobrowsky,M.,&Speck,A.K.2002,ApJ,571,936 Capps,R.W.,&Dyck,H.M.1972,ApJ,175,693 Meixner,M.,Zalucha, A.,Ueta,T.,Fong,D.,&Justtanont, K.2004,ApJ, Capps,R.W.,&Knacke,R.F.1976,PASP,88,224 614,371 Cohen,M.1979,MNRAS,186,837 Murakawa,K.,Suto,H.,Oya,S.,Yates,J.A.,Ueta,T.,&Meixner,M.2005, Cox,P.,Maillard,J.-P.,Huggins,P.J.,Forveille,T.,Simons,D.,Guilloteau, A&A,436,601 S.,Rigaut,F.,Bachiller,R.,&Omont,A.1997,A&A,321,907 Ney,E.P.,Merrill,K.M.,Becklin,E.E.,Neugebauer,G.,&Wynn-Williams, Dayal,A.,Hoffmann,W.F.,Bieging, J.H.,Hora,J.L.,Deutsch,L.K.,& C.G.1975,ApJ,198,L129 Fazio,G.G.1998,ApJ,492,603 Oppenheimer,B.D.,Bieging,J.H.,Schmidt,G.D.,Gordon,K.D.,Misselt, Dickinson,M.,etal.2002,in“HSTNICMOSDataHandbookVersion5.0”, K.A.,&Smith,P.S.2005,ApJ,624,957 ed.B.Mobasher(Baltimore:STScI) Osterbart,R.,Balega,Y.Y.,Blöcker,T.,Men’shchikov,A.B.,&Weigelt,G. Dyck,H.M.,Forbes,F.F.,&Shawl,S.J.1971,AJ,76,901 2000,A&A,357,169 García-Arrendondo,F.&Frank,A.2004,ApJ,600,992 Renzini,A.1981,inPhysicalProcessesinRedGiants,eds.I.IbenJr.&A. García-Hernández D.A.,Manchado, A.,García-Lario, P.,Benítez Cañete, Renzini(Dordrecht:Reidel),431 A.,Acosta-Pulido,J.A.,PérezGarcía,A.M.2004,inASPConf.Ser.Vol. Riera,A.,García-Lario, P.,Manchado, A.,Bobrowsky,M.,&Estalella, R. 313,AsymmetricPlanetary NebulaeIII,eds.M.Meixner, J.Kastner,B. 2003,A&A,401,1039 Balick,&N.Soker(SanFrancisco:ASP),367 Rijkhorst,E.J.,Icke,V.,&Mellema,G.2004,inASPConf.Ser.Vol.313, García-Lario,P.,Riera,A.,&Manchado,A.1999,ApJ,526,854 AsymmetricPlanetaryNebulaeIII,eds.M.Meixner,J.Kastner,B.Balick, García-Segura,G.,López,A.,&Franco,J.2005,ApJ,618,919 &N.Soker(SanFrancisco:ASP),472 Gledhill,T.M.2005,MNRAS,356,883 Sahai,R.1999,ApJ,524,L125 Gledhill, T. M., Chrysostomou, A., Hough, J. H., & Yates, J. A. 2001, Sahai,R.,Bujarrabal,V.,&Zijlstra,A.1999,ApJ,518,L115 MNRAS,322,321 Sahai,R.,Hines,D.C.,Kastner,J.H.,Weintraub,D.A.,Trauger,J.T.,Rieke, Goto,M.,Kobayashi,N.,Terada,H.,&Tokunaga,A.2002,ApJ,572,276 M.J.,Thompson,R.I.,&Schneider,G.1998,ApJ,492,L163 Habing, H.J.,&Blommaert, J.A.D.L.1993,inPlanetary nebulae, IAU Sahai, R., & Sánchez Contreras, C. 2004, in ASP Conf. Ser. Vol. 313, Symp.155,eds.R.Weinberger&A.Acker,243 AsymmetricPlanetaryNebulaeIII,eds.M.Meixner,J.Kastner,B.Balick, Hines,D.C.,Schmidt,G.D.,&Schneider,G.2000,PASP,112,983 &N.Soker(SanFrancisco:ASP),32 Hrivnak,B.J.1995,ApJ,438,341 Sahai,R.,Zijlstra,A.,Bujarrabal,V.,&teLintelHekkert,P.1999,AJ,117, Hrivnak,B.J.,Kwok,S.,&Volk,K.1989,ApJ,346,265 1408 Hrivnak,B.J.,Kelly,D.M.,&Su,K.Y.L.2004,inASPConf.Ser.Vol.313, SánchezContreras,C.,&Sahai,R.2001,ApJ,553,L173 AsymmetricPlanetaryNebulaeIII,eds.M.Meixner,J.Kastner,B.Balick, Scarrott,S.M.,&Scarrott,R.M.J.1995,MNRAS,277,277 &N.Soker(SanFrancisco:ASP),175 Schmidt,G.D.,Angel,J.R.,&Beaver,E.A.1978,ApJ,219,477 Hrivnak,B.J.,&Kwok,S.1999,ApJ,513,869 Schmidt,G.D.,Hines,D.C.,&Swift,S.2002,ApJ,576,429 Hrivnak,B.J.,Kwok,S.,Su,K.Y.L.1999,ApJ,524,849 Schwarz,H.,Aspin,C.,Corradi,R.L.M.,&Reipurth,B.1997,A&A,319, Hrivnak,B.J.,Reddy,B.E.2003,ApJ,590,1049 267 Iben,I.Jr.,&Renzini,A.1983,ARA&A,21,271 Serkowski,K.,&Shawl,S.J.2001,AJ,122,2017 Icke,V.2003,A&A,405,L11 Sevenster,M.N.2002,AJ,123,2772 Johnson,J.J.,&Jones,T.J.1991,AJ,101,1735 Shawl,S.J.,&Zellner,B.1970,ApJ,162,L19 Jura,M.,Chen,C.,&Werner,M.W.2000a,ApJ,544,L141 Skinner,C.J.,Meixner,M.,&Bobrowsky,M.1998,MNRAS,300,L29 Kastner,J.H.,Weintraub,D.A.,Gatley,I.,&Henn,L.2001,ApJ,546,279 Su,K.Y.L.,Hrivnak,B.J.,Kwok,S.,&Sahai,R.2003,AJ,126,848 Su,K.Y.L.,Volk,K.,Kwok,S.,&Hrivnak,B.J.1998,ApJ,508,744 10 Uetaetal. Taylor,K.N.R.,&Scarrott,S.M.1980,MNRAS,193,321 VandeSteene,G.C.,&vanHoof,P.A.M.2003,A&A,406,773 Trammell,S.R.,&Goodrich,R.W.1996,ApJ,468,L107 VanWinckel,H.2003,ARA&A,41,391 Trammell,S.R.,&Goodrich,R.W.2002,ApJ,579,688 Weigelt,G.,Balega,Y.Y.,Blöcker, T.,Hofmann,K.-H.,Men’shchikov, A. Trammell,S.R.,Dinerstein,H.L.,&Goodrich,R.W.1994,AJ,108,984 B.,&Winters,J.M.2002,A&A,392,131 Tuthill,P.G.,Monnier,J.D.,Danchi,W.C.,&Lopez,B.2000,ApJ,543, Wegner,G.,&Glass,I.S.1979,MNRAS,188,327 284 Weintraub,D.A.,Kastner,J.H.,Hines,D.C.,&Sahai,R.2000,ApJ,531, Ueta,T.,Meixner,M.,&Bobrowsky,M.2000,ApJ,528,861 401 Ueta,T.,Fong,D.,&Meixner,M.2001a,ApJ,557,L117 Westbrook,W.E.,Willner,S.P.,Merrill,K.M.,Schmidt,M.,Becklin,E.E., Ueta,T.,Meixner,M.,Hinz,P.M.,Hoffmann,W.F.,Brandner,W.,Dayal, Neugebauer,G.,&Wynn-Williams,C.G.1975,ApJ,202,407 A.,Deutsch,L.K.,Fazio,G.G.,&Hora,J.L.2001b,ApJ,557,831 Whitney,B.A.,&Hartmann,L.1993,ApJ,402,605 Ueta,T.,Murakawa,K.,&Meixner,M.2005,AJ,129,1625(PartI) Ueta,T.,Murakawa,K.,&Meixner,M.2006,ApJ,641,1113 Ulrich,B.T.,Neugebauer,G.,McCammon,D.,Leighton,R.B.,Hughes,E. E.,&Becklin,E.1966,ApJ,146,288