ebook img

How to Think Like a Mathematician PDF

279 Pages·2009·1.65 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview How to Think Like a Mathematician

This page intentionally left blank HowtoThinkLikeaMathematician Lookingforaheadstartinyourundergraduatedegreeinmathematics?Maybeyou’ve alreadystartedyourdegreeandfeelbewilderedbythesubjectyoupreviouslyloved? Don’tpanic!Thisfriendlycompanionwilleaseyourtransitiontorealmathematical thinking. Workingthroughthebookyouwilldevelopanarsenaloftechniquestohelpyou unlockthemeaningofdefinitions,theoremsandproofs,solveproblems,andwrite mathematicseffectively.Allthemajormethodsofproof–directmethod,cases, induction,contradictionandcontrapositive–arefeatured.Concreteexamplesareused throughout,andyou’llgetplentyofpracticeontopicscommontomanycoursessuchas divisors,EuclideanAlgorithm,modulararithmetic,equivalencerelations,andinjectivity andsurjectivityoffunctions. Thematerialhasbeentestedbyrealstudentsovermanyyearssoalltheessentialsare covered.Withover300exercisestohelpyoutestyourprogress,you’llsoonlearnhowto thinklikeamathematician. Essentialforanystartingundergraduateinmathematics,thisbookcanalsohelp ifyou’restudyingengineeringorphysicsandneedaccesstoundergraduatemathematics topics,orifyou’retakingasubjectthatrequireslogicsuchascomputerscience, philosophyorlinguistics. How to Think Like a Mathematician A Companion to Undergraduate Mathematics KEVIN HOUSTON UniversityofLeeds CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521895460 © K. Houston 2009 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2009 ISBN-13 978-0-511-50645-1 eBook (EBL) ISBN-13 978-0-521-89546-0 hardback ISBN-13 978-0-521-71978-0 paperback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. ToMumandDad–Thanksforeverything. Contents Preface Page ix I Studyskillsformathematicians 1 1 Setsandfunctions 3 2 Readingmathematics 14 3 WritingmathematicsI 21 4 WritingmathematicsII 35 5 Howtosolveproblems 41 II Howtothinklogically 51 6 Makingastatement 53 7 Implications 63 8 Finerpointsconcerningimplications 69 9 Converseandequivalence 75 10 Quantifiers–ForallandThereexists 80 11 Complexityandnegationofquantifiers 84 12 Examplesandcounterexamples 90 13 Summaryoflogic 96 III Definitions,theoremsandproofs 97 14 Definitions,theoremsandproofs 99 15 Howtoreadadefinition 103 16 Howtoreadatheorem 109 17 Proof 116 18 Howtoreadaproof 119 19 AstudyofPythagoras’Theorem 126 IV Techniquesofproof 137 20 TechniquesofproofI:Directmethod 139 21 Somecommonmistakes 149 22 TechniquesofproofII:Proofbycases 155 23 TechniquesofproofIII:Contradiction 161 24 TechniquesofproofIV:Induction 166 vii viii Contents 25 Moresophisticatedinductiontechniques 175 26 TechniquesofproofV:Contrapositivemethod 180 V Mathematicsthatallgoodmathematiciansneed 185 27 Divisors 187 28 TheEuclideanAlgorithm 196 29 Modulararithmetic 208 30 Injective,surjective,bijective–andabitaboutinfinity 218 31 Equivalencerelations 230 VI Closingremarks 241 32 Puttingitalltogether 243 33 Generalizationandspecialization 248 34 Trueunderstanding 252 35 Thebiggestsecret 255 Appendices 257 A Greekalphabet 257 B Commonlyusedsymbolsandnotation 258 C Howtoprovethat… 260 Index 263

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.