Cambridge University Press 978-1-107-19462-5 — How to Divide When There Isn't Enough William Thomson Frontmatter More Information HowtoDivideWhenThereIsn’tEnough How to Divide When There Isn’t Enough develops a rigorous yet accessible pre- sentation of the state of the art for the adjudication of conflicting claims and the theoryoftaxation.Itcoversallaspectsonemaywishtoknowaboutclaimsprob- lems: the most important rules, the most important axioms, and how these two sets are related. More generally, it also serves as an introduction to the modern theoryofeconomicdesign,whichinthelasttwentyyearshasrevolutionizedmany areasofeconomics,generatingawiderangeofapplicableallocationrulesthathave improvedpeople’slivesinmanyways.Indevelopingthetheory,thebookemploys avarietyoftechniquesthatwillappealtobothexpertsandnonexperts.Compiling decadesofresearchintoasingleframework,WilliamThomsonprovidesnumerous applicationsthatwillopenalargenumberofavenuesforfutureresearch. WilliamThomsonistheElmerMillimanProfessorofEconomicsattheUniversity of Rochester. He is the author of several books including A Guide for the Young Economist,whichhasappearedinfourtranslations,andoveronehundredarticles. In2001,hewontheUniversityAwardforExcellenceinGraduateTeachingatthe UniversityofRochester.HeisaFellowoftheEconometricSociety,theSocietyfor EconomicTheory,andtheGameTheorySociety. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-19462-5 — How to Divide When There Isn't Enough William Thomson Frontmatter More Information EconometricSocietyMonographsSeries Editors: AndreaPrat,ColumbiaUniversity StéphaneBonhomme,UniversityofChicago TheEconometricSocietyisaninternationalsocietyfortheadvancementofeconomictheoryin relation to statistics andmathematics. The EconometricSociety Monographseries is designed to promote the publication of original research contributions of high quality in mathematical economicsandtheoreticalandappliedeconometrics. BooksintheSeries O.Compte&A.Postlewaite,IgnoranceandUncertainty,2019 I.Molchanov&F.Molinari,RandomSetsinEconometrics,2018 B.Honoré,A.Pakes,M.Piazzesi,&L.Samuelson(eds.),AdvancesinEconomicsand Econometrics:EleventhWorldCongress,Vols.I&II,2017 S.Maurer,OntheShouldersofGiants:ColleaguesRememberSuzanneScotchmer’s ContributionstoEconomics,2017 C.P.Chambers&F.Echenique,RevealedPreferenceTheory,2016 J.-F.Mertens,S.Sorins,&S.Samir,RepeatedGames,2015 C.Hsiao,AnalysisofPanelData:3rded.,2014 C.Cameron&P.Trivedi,RegressionAnalysisofCountData,2nded.,2013 A.Harvey,DynamicModelsforVolatilityandHeavyTails,withApplicationstoFinancialand EconomicTimeSeries,2013 D.Acemoglu,M.Areilano,&E.Dekel(eds.),AdvancesinEconomicsandEconometrics: TheoryandApplications,TenthWorldCongress,Vols.I,II,&III,2013 M.Fleurbaey&F.Maniquet,ATheoryofFairnessandSocialJustice,2011 R.Vohra,MechanismDesign:ALinearProgrammingApproach,2011 K.Samphantharak&R.Townsend,HouseholdsasCorporateFirms:AnAnalysisofHousehold FinanceUsingIntegratedHouseholdSurveysandCorporateFinancialAccounting,2009 I.Gilboa,TheoryofDecisionunderUncertainty,2009 F.Vega-Redondo,ComplexNetworks,2007 R.Blundell,W.Newey,&T.Persson,(eds.),AdvancesinEconomicsandEconometrics:Theory andApplications,NinthWorldCongress,Vols.I,II,&III,2006 J.Roemer,Democracy,Education,andEquality,2006 C.Blackorby,W.Bossert,&D.Donaldson,PopulationIssuesinSocialChoiceTheory,Welfare EconomicsandEthics,2005 R.Koenker,QuantileRegression,2005 C.Hsiao,AnalysisofPanelData,2nded.,2003 M.Dewatripont,L.P.Hausen,&S.J.Turnovsky(eds.),AdvancesinEconomicsand Econometrics:TheoryandApplications,EighthWorldCongress,Vols.I,II,&III,2003 E.Ghysels,N.Swanson,&M.Watson(eds.),EssaysinEconometrics:CollectedPapersofClive W.J.Granger,Vols.I&II,2001 S.Strøm(ed.),EconometricsandEconomicTheoryinthe20thCentury:TheRagnarFrisch CentennialSymposium,1999 A.C.Cameron&P.K.Trivedi,RegressionAnalysisofCount-Data,1998 D.Jacobs,E.Kalai,&M.Kamien(eds.),FrontiersofResearchinEconomicTheory:TheNancy L. SchwartzMemorialLectures,1998 D.M.Kreps&K.F.Wallis(eds.),AdvancesinEconomicsandEconometrics:Theoryand Applications,SeventhWorldCongress,Vols.I,II,&III,1997 R.Guesnerie,AContributiontothePureTheoryofTaxation,1995 C.Sims(ed.),AdvancesinEconometrics,SixthWorldCongress,Vols.I&II,1994 Continuedonpagefollowingtheindex © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-19462-5 — How to Divide When There Isn't Enough William Thomson Frontmatter More Information How to Divide When There Isn’t Enough From Aristotle, the Talmud, and Maimonides to the Axiomatics of Resource Allocation William Thomson UniversityofRochester © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-19462-5 — How to Divide When There Isn't Enough William Thomson Frontmatter More Information UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107194625 DOI:10.1017/9781108161107 (cid:2)c WilliamThomson2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedintheUnitedKingdombyTJInternationalLtd,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Thomson,William,1949–author. Title:Howtodividewhenthereisn’tenough:fromAristotle,theTalmud, andMaimonidestotheaxiomaticsofresourceallocation/WilliamThomson, UniversityofRochester. Description:Cambridge,UnitedKingdom;NewYork,NY:CambridgeUniversity Press,2019.|Series:EconometricSocietymonographseries Identifiers:LCCN2019006500|ISBN9781107194625 Subjects:LCSH:Scarcity–Econometricmodels.|Resource allocation–Econometricmodels. Classification:LCCHB801.T52852019|DDC330.01/5195–dc23 LCrecordavailableathttps://lccn.loc.gov/2019006500 ISBN978-1-107-19462-5Hardback ISBN978-1-316-64644-1Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-19462-5 — How to Divide When There Isn't Enough William Thomson Frontmatter More Information To Lisa and Rachèle © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-19462-5 — How to Divide When There Isn't Enough William Thomson Frontmatter More Information © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-19462-5 — How to Divide When There Isn't Enough William Thomson Frontmatter More Information Contents ListofFigures pagexii ListofTables xix Acknowledgments xx GeneralNotation xxi 1 Introduction 1 1.1 ClaimsProblems 1 1.2 TheModel 3 1.3 TwoPuzzlesintheTalmud 9 1.4 ThreeApproaches 11 1.4.1 DirectApproach 12 1.4.2 AxiomaticApproach 12 1.4.3 Game-TheoreticApproach 15 1.5 HistoricalNote 16 1.6 RoadMap 16 1.7 HowtoUseThisBook 17 1.8 ConcludingComment 18 2 InventoryofDivisionRules 21 2.1 AnInventoryofRules 22 2.1.1 ProportionalRule 22 2.1.2 ConstrainedEqualAwardsRule 23 2.1.3 ConstrainedEqualLossesRule 26 2.1.4 Concede-and-Divide 28 2.1.5 Piniles’Rule 31 2.1.6 TalmudRule 32 2.1.7 ConstrainedEgalitarianRule 34 2.1.8 RandomArrivalRule 37 2.1.9 MinimalOverlapRule 38 2.1.10 RuleBasedonRandomStakes 43 vii © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-19462-5 — How to Divide When There Isn't Enough William Thomson Frontmatter More Information viii Contents 2.2 FamiliesofRules 45 2.2.1 SequentialPriorityFamily 45 2.2.2 Young’sFamily 46 2.2.3 ICIandCICFamilies 53 2.3 Summary 60 3 BasicPropertiesofDivisionRules 62 3.1 Balance 62 3.2 Continuity 63 3.3 Homogeneity 64 3.4 LowerandUpperBoundsonAwardsandLosses 65 3.4.1 DefiningBounds 65 3.4.2 RecursiveAssignmentofLowerBounds 72 3.5 Conditional Full Compensation, Conditional Null Compensation,andRelatedProperties 75 3.6 SymmetryProperties 79 3.7 OrderPreservationProperties 89 4 MonotonicityProperties 94 4.1 EndowmentMonotonicityandRelatedProperties 95 4.2 ClaimMonotonicityandRelatedProperties 105 4.3 InverseSetsAxioms 115 5 ClaimsTruncationInvarianceandMinimalRightsFirst 118 5.1 ClaimsTruncationInvariance 119 5.2 MinimalRightsFirst 123 6 CompositionDownandCompositionUp 131 6.1 CompositionDown 131 6.2 CompositionUp 140 7 Duality 157 7.1 DualityforRules 157 7.2 DualityforProperties 165 7.3 DualityforTheorems 171 7.4 Characterizations 172 8 OtherInvarianceProperties 182 8.1 NoAdvantageousTransfer 182 8.2 ClaimsSeparabilityandVariants 184 8.3 ConvexityandAdditivityProperties 187 8.4 RationalizingRulesasMaximizersofBinaryRelations 195 9 Operators 200 9.1 ClaimsTruncationOperator 200 © in this web service Cambridge University Press www.cambridge.org