Host plant defense signaling in response to a coevolved herbivore combats introduced herbivore attack AnastasiaM.Woodard1,GaryN.Ervin2 &TravisD.Marsico1 1DepartmentofBiologicalSciences,ArkansasStateUniversity,P.O.Box599,StateUniversity,Arkansas,72467 2DepartmentofBiologicalSciences,MississippiStateUniversity,P.O.BoxGY,295LeeBlvd.,MississippiState,Mississippi,39762 Keywords Abstract Coevolution, defensepriming, herbivore-inducedplantvolatiles, HIPVs, Defense-free space resulting from coevolutionarily na¨ıve host plants recently has insectherbivore, invasivespecies, na¨ıvehost, beenimplicatedasafactorfacilitatinginvasionsuccessofsomeinsectspecies.Host plantdefense, plant–plantsignaling. plants, however, may not be entirely defenseless against novel herbivore threats. Volatilechemical-mediateddefensesignaling,whichallowsplantstomountspe- Correspondence cific,rapid,andintenseresponses,mayplayaroleinsystemsexperiencingnovel TravisD.Marsico,DepartmentofBiological Sciences,ArkansasStateUniversity, threats.Hereweinvestigatedefenseresponsesofhostplantstoanativeandexotic P.O.Box599,StateUniversity, herbivore and show that (1) host plants defend more effectively against the coe- Arkansas,72467. volvedherbivore,(2)plantscanbeinducedtodefendagainstanewly-associated Tel:+870-680-8191;Fax:+870-972-2638; herbivore when in proximity to plants actively defending against the coevolved E-mail:[email protected] species,and(3)thesedefensesaffectlarvalperformance.Thesefindingshighlight Received:08November2011;Revised: the importance of coevolved herbivore-specific defenses and suggest that na¨ıvete´ 13January2012;Accepted:24January2012 or defense limitations can be overcome via defense signaling. Determining how thesefindingsapplyacrossvarioushost–herbivoresystemsiscriticaltounderstand EcologyandEvolution2012;2(5): mechanismsofsuccessfulherbivoreinvasion. 1056–1064 doi:10.1002/ece3.224 duringthetimerequiredtomountdefensesonceanattackis Introduction initiated(Pengetal.2005;vanHultenetal.2006;Frostetal. Fromthornstopoison,plantshaveevolvedavarietyofmech- 2008;Karban2011). anismstocombatherbivory.Whilesomedefensesareconsti- Defensepriminghasbeenshowntoresultinafaster,more tutive,othersareinducedonlyuponperceptionofattackto intenseresponse,specificallytailoredtothethreateningher- allowforoptimalallocationofresources(KarbanandBald- bivore (Frost et al. 2008) and, thus, represents an elegant win1997;Agrawal1998;Karban2011).Inducibleplantde- example of mechanisms that can arise during the coevolu- fenses rely heavily upon herbivore-induced plant volatiles tionaryarmsracebetweenplantsandtheirattackers(Kant (HIPVs) as a signaling mechanism both for initiating sys- andBaldwin2007;DickeandBaldwin2010;WuandBald- temic defense response throughout the attacked plant, as win2010).Researchtodate,however,hasfailedtoexamine well as for signaling predators and parasitoids of the her- theeffectsofdefenseprimingorsignalinginasystemwith bivore as an indirect defense (Kessler and Baldwin 2001; a novel (i.e., introduced) threat (Kant and Baldwin 2007), HeilandSilvaBueno2007;Dicke2009;DickeandBaldwin despitetheincreasingnumberofsuchnewassociationsglob- 2010;WuandBaldwin2010).Inaddition,ithasbeenshown ally.Hereweinvestigatedifferentialdefenseresponsesofhost thatHIPVsfunctionassignalsbetweenneighboringplants, plantstoanativeversusanexoticinsectherbivoreandshow indicating an increased probability of attack and allowing that(1)hostplantsdefendmoreeffectivelyagainstthecoe- for upregulation of defense pathways in unattacked plants volvedherbivore,(2)plantscanbeinducedtodefendagainst (BaldwinandSchultz1983;Engelberthetal.2004;Pengetal. anewly-associatedherbivorewheninproximitytoplantsac- 2005; Arimura et al. 2010; Wu and Baldwin 2010; Karban tivelydefendingagainstthecoevolvedspecies,and(3)these 2011).This“primedstate”(Prime–A–PlantGroup2006)al- defensesaffectlarvalperformance. lowsplantstosimultaneouslyavoidthecostsofimplementing We studied the cactophagous pyralids Cactoblastis cac- defensesintheabsenceofenemies,whileminimizingdamage torum (Berg) and Melitara prodenialis Walker, which are 1056 (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd.ThisisanopenaccessarticleunderthetermsoftheCreative CommonsAttributionNonCommercialLicense,whichpermitsuse,distributionandreproductioninanymedium,provided theoriginalworkisproperlycitedandisnotusedforcommercialpurposes. A.M.Woodardetal. PlantDefenseSignalingCombatsHerbivoreAttack Figure1. Fifthinstarcactus-boringmothlarvae.(A)Cactoblastiscacto- rum(Berg)and(B)MelitaraprodenialisWalker. associatedpredominantlywithpricklypearcactiofthegenus Opuntia(Cactaceae).NorthAmericahas10species(intwo Figure2. ObservableinducibledefensesofOpuntia.(A)Programmed genera, Melitara and Ozamia) of native Opuntia-feeding celldeathdefenseinOpuntiahumifusa,(B)mucilagedefenseinO.hu- pyralids (Neunzig 1997). In 1989, however, the historic bi- mifusa,and(C)programmedcelldeathdefenseandmucilageinOpuntia ological control agent C. cactorum, a species native to Ar- stricta. gentina and neighboring countries, was discovered to have C. cactorum (personal observation). We document here colonizedFlorida(HabeckandBennett1990)(Fig.1A).Since greaterdefenseresponseofOpuntiatoherbivorybythena- then,C.cactorumhasspreadacrossthecoastalregionsofthe tive coevolved herbivore M. prodenialis than to the newly- southeasternUnitedStates(LegaspiandLegaspi2010;Mad- associatedinvasiveherbivoreC.cactorum.Ourresultsareim- sen 2011), where it attacks all Opuntia species within this portantforimplicatingdefense-freespaceasakeyfactorthat region(Solisetal.2004;Simonsonetal.2005;Sauby2009). hasfacilitatedtheinvasionofC.cactorumandalloweditto Melitaraprodenialis,theonlyspeciesofcactophagousmoth becomeadestructivepest,whereasM.prodenialisisnotout- tonaturallyinhabitthesoutheasternUnitedStates(Fig.1B), breaking. We also document the apparent communication doesnotcommonlynegativelyimpactgrowthofOpuntiain- ofdefensesfromplantsrespondingtothecoevolvednative dividualsorpopulations(CarltonandKring1994;Bakerand M. prodenialis to plants experiencing attack by the newly- Stiling2009),indicatingthatthehostplantsareabletotoler- associatedC.cactorum.WesuggestHIPVsasthemechanism ateM.prodenialisfeeding.Inthefieldandlaboratory,Opun- of this defense transfer. Our findings highlight the impor- tiahumifusa(Raf.)Raf.andOpuntiastricta(Haw.)Haw.,the tance of coevolved herbivore-specific defenses and suggest two most abundant host plants in the southeastern United thatna¨ıvete´ ordefenselimitationscanbeovercomeviade- States,havebeenobserveddefendingagainstM.prodenialis fensesignaling. bysectioningoffcladodesviaanapparentprogrammedcell deathresponse,oftenwithin48hoflarvalfeeding(personal Materials and Methods observation),orbyexudingthickmucilage(Mafokoaneetal. 2007)(Fig.2).Wehypothesizedthatthesedefenseresponses Tworeplicateexperimentswereconductedinwhichlarvaeof decreaselarvalsurvivorshipbydeterringfeedingandincreas- thenative(M.prodenialis)andinvasive(C.cactorum)moths ingopportunitiesforlarvaldesiccation,predation,andpara- were reared separately on host plants housed within mesh sitism.Theseeasilyobservedinducedplantdefensesnormally cages. Each cage contained a single herbivore species, but arenotexhibitedbyNorthAmericanOpuntiainfestedwith treatmentsvariedbasedoncombinationsofherbivorespecies (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. 1057 PlantDefenseSignalingCombatsHerbivoreAttack A.M.Woodardetal. in each rearing room as depicted in Figure 3. Plants and (Fig.3).Therewasairflowwithineachrearingroomfacili- insectswerewildcollectedfromtheFloridaPanhandle,USA. tatedbyindividualairhandlingunitsthatwasnotrecirculated CladodesofO.humifusaandO.strictawerecutfromlarge butventedoutofthebuilding.Additionalgreenhouse-grown wild plants and planted in two-liter pots filled with sand hostplantswereaddedasneededuntillarvalfeedingceased. collected from a dredge site in Northeast Mississippi, then Plantswerewateredasneededeverytwotothreeweekswith allowedtorootinagreenhouseforatleastoneseason(e.g., 300mLoftapwater. February–April)beforeinclusioninthestudy.Immediately Entry into the host, feeding, and defense responses were beforetheexperiments,C.cactorumandM.prodenialis egg recordedtwiceweeklyforthedurationoftheexperiments, masses were collected from Opuntia spp. from field loca- and cages were inspected twice a week for the presence of tionsintheFloridaPanhandle,USA,andtransportedback pupae.Allpupaewereremovedfromtheirsilkencocoonsfor toUSDAAPHIS-approvedquarantinefacilities. weighingandsexing.Observedplantdefenseswereassigned Each of the total 226 experimental cages began with a anumericalvaluethatrangedfromnodefensetoseverede- single, greenhouse-grown, potted Opuntia host plant and fense:0=nodefense,1=singledropofmucilage,2=thin 10–20eggsorneonatelarvaeofoneoftheherbivorespecies. mucilage, 3 = thick mucilage, and 4 = mucilage and pro- In each treatment, equal numbers of O. humifusa and grammedcelldeath.Mostmortalitydirectlyfromhostplant O.strictawereusedashostsforeachmothspecies.Cagescon- defenses (e.g., larvae becoming trapped in mucilage) hap- taining the different host species were intermingled within penedearly,withinthefirstmonthoftheexperiment,when eachroom.Laboratoryexperimentconditionswereheldat larvaeweresmall.Defensescontinuedthroughlarvalfeeding, 26◦C,12L:12D,and50%orhigherrelativehumidity.Rearing butnecrosisfromfeedingdamagebecameincreasinglyhard roomscontained30cm×30cm×38cmPVC-framecages, to differentiate from programmed cell death defense. Thus each encased in a sewn polyester no-see-um mesh (∼100 dataareonlypresentedondefensesthatoccurredduringthe holespercm2)thatwastiedclosedwithnylonrope.Herbi- firstmonthoflarvalfeeding.Plantdefenseswereanalyzedfor vore treatments included rooms containing each herbivore allplantsusingaKruskal–Wallistestwithapost-hoccom- reared alone and rooms containing both herbivore species parison of mean ranks. Larval development time (period Figure3. Experimentaldesignofthetworearing experiments.(A)ForExperiment1atMississippi StateUniversity(2009–2010),tworearingrooms wereused.ThetreatmentofCactoblastis cactorumrearedonlyinthepresenceofplants infestedwithC.cactorumwasseparatedintime fromthetreatmentofC.cactorumrearedinthe presenceofplantsfedonbyMelitaraprodenialis (aswellasM.prodenialisrearedinthepresenceof plantsfedonbyC.cactorum).Halfofthecages containedOpuntiastrictaasthehostplant,and theotherhalfcontainedOpuntiahumifusa.(B)In Experiment2atArkansasStateUniversity (2010–2011),fourtreatments(C.cactorumreared onlyinthepresenceofplantsfedonbyC. cactorum,C.cactorumrearedinthepresenceof plantsfedonbywithM.prodenialis,M. prodenialisrearedinthepresenceofplantsfedon byC.cactorum,andM.prodenialisrearedonlyin thepresenceofplantsfedonbyM.prodenialis) wereseparatedinspace,inthreerearingrooms. HalfofthecagescontainedO.strictaasthehost plant,andhalfcontainedO.humifusa. 1058 (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. A.M.Woodardetal. PlantDefenseSignalingCombatsHerbivoreAttack Table1. Generallinearmixedmodelresultsforlarvalperformancemeasures.Despiteasignificantdifferencebetweenthetwoexperiments,the influenceofourintendedexperimentaltreatmentsrangedfrom4×to40×stronger(basedonF-statistics)thanthatoftemporalreplication. Source Variabletype DF Adjustedsumofsquares Adjustedmeansquares F P Averagelarvalperiod Treatment Fixed 3 597,440 199,147 333.5 <0.001 Experiment Random 1 4936 4936 8.3 0.005 Error 167 99,731 597 Total 171 Survivorshiptopupation Treatment Fixed 3 85,126 28,375 31.5 <0.001 Experiment Random 1 6837 6837 7.6 0.006 Error 221 901 901 Total 225 Averagefemalepupalmass Treatment Fixed 3 0.4592 0.1531 53.4 <0.001 Experiment Random 1 0.0384 0.0384 13.4 <0.001 Error 154 0.4413 0.0029 Total 158 between larval entry into host plant and pupation), larval (2)theadditionofT5fluorescentgrowlightinginExperiment survivorship,andfemalepupalmasswerecalculatedandan- 2(notethatbothexperimentshadthesamelightregime,but alyzed by combining data from the two experiments using Experiment 2 had more intense light), and (3) the use of a general linear mixed model with treatment as a fixed ef- neonatelarvae(Experiment1)versusunhatchedeggmasses fectandexperimentasarandomeffect.PosthocTukeyLSD (Experiment2).Becauseofthesefactorsuniquetoeachex- wasusedtocomparefixedeffecttreatmentmeansofthere- periment, the data analysis included “Experiment” as ran- sponsevariablesinapair-wisefashion.Sizedifferencesexist domeffectinthelinearmodel.Significantdifferencesinthe betweenpupaeofoppositesexes;onlymassoffemalepupae treatments (fixed effects) are considered robust given that is presented because female mass has been associated with differencesinexperimentalconditionsbetweenthereplicate fecundity(Hone˘k1993;Tammaruetal.2002),anditelim- studiesaddedvariation(Table1). inatesbiasassociatedwithunevensexratiosinourdataset. AnalyseswereconductedusingMinitab15(Minitab,Inc.). Results Nosignificantdifferencesinplantdefenseorlarvalperfor- Differentialdefense mance were discovered due to host plant species, so plant species was not used as a factor in the final model. For all When reared separately, host plants defended to a much larval performance analyses, standard residuals were inves- greaterdegreeagainstthecoevolvedM.prodenialisthanthe tigated by plotting them. Assumptions of the linear model newly-associated C. cactorum (Kruskal–Wallis H = 117.2, weremetinallanalyses. P < 0.001, df = 3; Fig. 4). Larval development time was Replicate experiments were conducted during sequential fourfold longer for M. prodenialis than for C. cactorum years at two universities to replicate treatment combina- (F3,167 = 333.5, P < 0.001; Fig. 5A; Table 1), mean sur- tions.AtMississippiStateUniversity(MSU),threetreatments vivorship was threefold lower for M. prodenialis than for (C. cactorum alone, C. cactorum with M. prodenialis, and C.cactorum(F3,221=31.5,P<0.001;Fig.5B;Table1),and M. prodenialis with C. cactorum) were separated in time mean female pupal mass was twofold higher for M. prode- duetolaboratoryspaceavailabilityandavailabilityoffield- nialisthanforC.cactorum(F3,154=53.4,P<0.001;Fig.5C; collectedeggs(Fig.3A).Thesecondexperiment,performed Table1). at Arkansas State University (ASU), separated four experi- We have evidence that the long M. prodenialis larval mentaltreatmentsinspace(C.cactorumalone,C.cactorum period (Fig. 5A) as well as the large female pupal mass with M. prodenialis, M. prodenialis with C. cactorum, and (Fig.5C)wasinresponsetodefensesproducedbythehost M.prodenialisalone)(Fig.3B).Besidesthedifferentsepara- plants as opposed to simply species differences between tionofexperimentaltreatments(temporalvs.spatial),afew M. prodenialis and C. cactorum. We conducted a trial in additionaldifferencesexistedbetweenthetwoexperiments: whichM.prodenialis larvaeweredividedbetweentwocon- (1)differentexperimentallocations(previouslydiscussed), tainers and fed synthetic diet (i.e., a non-defending food (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. 1059 PlantDefenseSignalingCombatsHerbivoreAttack A.M.Woodardetal. Figure4. Hostplantdefenseresponses resultingfromthefourtreatmentsapplied. Percentageofplantsdefendingateachofthe describedobservabledefenselevelsisshown. DatawereanalyzedwithaKruskal–Wallistest followedbyaleastsignificantdifferencein rankstesttodeterminepair-wisedifferences. Differentlettersabovebarsindicatesignificant differencesbetweentreatments. source;seeMartietal.(2008)forsyntheticdietrecipe).For Discussion M.prodenialisrearedonsyntheticdiet,theaveragelarvalpe- Differentialdefense riodwasmorethanthreefoldshorterthanondefendinghost plants(2-samplet-test:t =–30.09,df=90,P<0.001;diet Our experimental results are in agreement with recent meandevelopmenttime=61.4days±1.8SE,n=23caterpil- findingsthatcoevolvedhost–herbivoreinteractionsprovide larsintwocages;hostplantdevelopmenttime=212.1days bottom-upcontrolonnativeherbivores,butmayallowfor ±4.7SE,n=74caterpillarsin13cages).Theaveragefemale outbreaksofnewly-associatedinvasiveinsectspecies(Parker pupalmasswas1.4-foldsmallerforlarvaefedonsynthetic et al. 2006; Gandhi and Herms 2009; Raupp et al. 2010; dietthanondefendinghostplant(2-samplet-test:t=–3.62, Desurmont et al. 2011). During their coevolution, North df=17,P =0.002;dietmeanfemalepupalmass=0.189g AmericanOpuntialikelyevolvedtheabilitytorecognizeand ±0.018SE,n=9caterpillarsintwocages;hostplantmean defendagainstM.prodenialis,whereasC.cactorumrepresents femalepupalmass=0.271g±0.017SE,n=36caterpillars a novel threat, against which Opuntia does not or cannot in13cages).Thelarvaldevelopmenttimesandpupalmasses defend (Pimentel 1963). Without knowledge of their dif- ofdiet-rearedM.prodenialisaremoresimilartoC.cactorum ferentevolutionaryhistories,similarplantresponsestolar- thantoM.prodenialisindividualsrearedondefendinghosts. vaewouldbeexpectedasbothmothspeciesappeartohave identicalfeedingstrategies(Neunzig1997;BakerandStiling 2009).Incontrastwiththisexpectation,ourresultssuggest Defensesignaling coevolutionhasastrongerinfluencethanconvergentfeeding WhenC.cactorumwasrearedtogetherwithM.prodenialis, habits. defensesignalingwasexhibitedbyplantsfeduponbyC.cac- The signals involved in recognition and defense in this torum(Kruskal-WallisH=117.2,P<0.001,df=3;Fig.4). study system are yet unknown, but in various systems in- Just over 5% of plants defended with thick mucilage when ducibledefenseresponsehasbeenshowntobeinitiatedby C.cactorumwasrearedalone,butover35%ofplantsdefended chemical recognition of a specific herbivore (Alborn et al. withthickmucilageand/orprogrammedcelldeathagainstC. 1997;Pare´ etal.1998;FeltonandTumlinson2008;Wuand cactorumwhenthisspecieswasrearedinthesameroomasM. Baldwin2009;WuandBaldwin2010).Someinsectshavebeen prodenialis(Fig.4).CactoblastiscactorumrearedwithM.pro- foundtorepressorinhibitdefenses,insomecasesthrough denialisexperienceddecreasedperformancebasedonlarval the upregulation of conflicting pathways in the host plant developmenttimewhencomparedwithC.cactorumreared (Musseretal.2002);thiscouldbeapossiblemechanismused alone(F3,167=333.5,P<0.001;Fig.5A;Table1).Femalepu- byC.cactoruminthissystem.Alternatively,NorthAmerican paeofC.cactorumrearedwithM.prodenialisweighedmore Opuntiacouldbena¨ıvetothefeedingofC.cactorum(Gandhi thanfemalepupaeofC.cactorumrearedalone(F3,154=53.4, and Herms 2009; Desurmont et al. 2011) if C. cactorum P <0.001;Fig.5C;Table1).Thoughsurvivorshipbetween lacksthespecificelicitorsthatcuehostplantdefenseagainst the two C. cactorum treatments was not significantly dif- M.prodenialis. ferent in the laboratory (Tukey LSD pair-wise P = 0.23; Onnon-defendingfoodsources,larvaldevelopmenttimes Fig.5B),atwofoldincreaseinlarvaldevelopmenttimewould for both our moth study species were similar to those of likelycontributetosurvivorshipdifferencesinnature.Thus, previouslaboratorystudies(CarltonandKring1994;Legaspi ourdatashowthatOpuntiadefendedmoreoftenandmore andLegaspi2007;Mafokoaneetal.2007;Martietal.2008). stronglyagainstC.cactorumwheninthepresenceofother When plants were defending, however, larval development OpuntiaplantseatenbyM.prodenialis. timesforbothspeciesincreasedtolevelsunprecedentedin 1060 (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. A.M.Woodardetal. PlantDefenseSignalingCombatsHerbivoreAttack Figure5. Larvalperformanceresponsestothefourtreatmentsapplied.(A)Averagelarvaldevelopmenttime,(B)percentsurvivorshiptopupation, and(C)meanfemalepupalmassforeachoftheexperimentaltreatments.OrangesquaresdenoteCactoblastiscactorumandbluesquaresdenote Melitaraprodenialislarvalperformanceresponses.Errorbarsare95%confidenceintervals;differentlettersabovemeanpointsindicatesignificant differencesatP<0.05.Datawereanalyzedwithagenerallinearmixedmodelwithherbivoretreatmentasafixedeffectandexperimentasarandom effect.Pair-wisedifferencesweredeterminedwithaTukeyLSD.Sizedifferencesexistbetweenpupaeofoppositesexes;onlymassoffemalepupaeis presentedtoeliminatebiasassociatedwithunevensexratios. theliterature.Pimentel(1963)observedthatmostsuccessful Defensesignaling biologicalcontrolagentshadpreviousassociationsonlywith Sinceeachplantwaspottedindividuallyandhadnophysi- relatedspeciesorgeneraofhost,butlackedanevolutionary calcontactwithanyotherplant,wededucethatplant–plant historywiththespeciescontrolled.Therefore,itispossible signalingisoccurringforplantseatenbyC.cactorumfollow- thatthesharedevolutionaryhistorybetweenO.stricta and ing detection of HIPVs released from the plants defending M.prodenialis isthereasonthatC.cactorumwasidentified against M. prodenialis (Farmer 2001; Heil and Silva Bueno asasuperiorcontrolagentforO.strictaoverM.prodenialis 2007;Arimuraetal.2010;Karbanetal.2010).Ourresults, (Dodd1940). (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. 1061 PlantDefenseSignalingCombatsHerbivoreAttack A.M.Woodardetal. therefore,appeartodemonstratethatHIPVsinitiatedbyna- InvestigationsofthepossibleusesofM.prodenialistoreduce tive,coevolvedherbivorescaneitherinducedefenseinevolu- negativeimpactsofC.cactorumonnativeOpuntiaindividu- tionarilyna¨ıvehostplantspeciesorallowhostplantstoover- alsandpopulationswillneedtobetestedinfieldconditions. comenovelcounterdefensesofnewly-associatedherbivores. Furtherexplorationofdefensesignalinginrelationtospecies GiventheclonalnatureofOpuntia,plant–plantsignalingin invasions and additional research on the influence of evo- thissystemmayhavearisenaswithin-plantsignalsandascues lutionaryhistoryonplant–herbivoreinteractionsaregreatly amongkin(HeilandKarban2010).Thereisanuntestedalter- needed. native,however.Eventhoughplantshaveneverbeenshown todirectlyrespondtoinsect-derivedvolatilesignals(Wein- Acknowledgments hold and Baldwin 2011), it is possible that selective pres- sureswouldfavorthisadaptation.Therefore,insect-derived TheauthorsthankClayCooper,MikeDampier,AngelDe- volatiles are being pursued as an alternative to plant–plant Dual,MeghanFoard,StevenHughes,EmilyMizell,Lysbeth signalinginthissystem. Perez,KristenSauby,andFayeStephensfortheirhelpinrun- Elevateddefenses againstC. cactorum resultedin signifi- ningtheexperimentsandRichardBrown,FrankDavis,De- cantlarvalperformanceconsequences.Ourresultsshowthat braIngram,andJohnSchneiderfortheiradvice.Wethank larval development time was extended and pupal mass of Florida State Parks for access to moth egg collection, and C.cactorumincreasedinplantsexhibitingelevateddefenses we greatly appreciate the help from Margaret Aresco, Matt (Fig.5).Thechangeinlarvaldevelopmenttimeindicatesthat Aresco, and “Turtle” Bob Walker at Nokuse Plantation for hostplantresistancereduceslarvalperformance,likelyfrom accesstomotheggsandhostplantmaterialandtheirgen- chemical defenses that limit food supply, reduce nutrient eroushospitalityandlodging.Themanuscriptwasreviewed value,orinterferewithhormonesinthelarvae(Chen2008). and improved by comments from Kenton Leigh, Shannon Threatsandsuboptimalconditionsinnaturecancreatemore Pelini, and Kirsten Prior. This work was funded by USDA opportunities for larvae with increased development time (2007-55320-17847) and USGS grants (04HQAG0135 and to succumb to predators, parasitoids, infection, starvation, 08HQAG0139)toG.N.E.andbytheArkansasBiosciences anddesiccation,thusreducingsurvivorship(Ha¨ggstro¨mand Institute and Arkansas State University College of Sciences Larsson1995;BenryandDenne1997;Coleyetal.2006;Cor- andMathematics. nelissenandStiling2006).Moreover,ourdataareinagree- mentwithpreviousfindingsthatshowlongerdevelopment References time in most insects is correlated with increased body size Agrawal,A.A.1998.Inducedresponsestoherbivoryand (Berger et al. 2006; Coley et al. 2006) (Fig. 5). Large body increasedplantperformance.Science279:1201–1202. sizealsohasbeenlinkedtoincreasedsusceptibilitytopreda- Alborn,H.T.,T.C.J.Turlings,T.H.Jones,G.Stenhagen,J.H. tors, so it is possible that reductions in survivorship could Loughrin,andJ.H.Tumlinson.1997.Anelicitorofplant becompoundedinnatureduetothecombinedlargerbody volatilesfrombeetarmywormoralsecretion.Science sizeandextendedlarvalperiod(Bergeretal.2006).There- 276:945–949. fore, responses resulting from defense-induced plants have Arimura,G.,K.Shiojiri,andR.Karban.2010.Acquired thepotentialtodecreasethesurvivorshipandreproductive immunitytoherbivoryandallelopathycausedbyairborne output of C. cactorum to a greater degree in nature than plantemissions.Phytochemistry71:1642–1649. inthelaboratory.Inmostinsectspecies,however,largefe- Baker,A.J.,andP.Stiling.2009.Comparingtheeffectsofthe malesareabletoproducegreaternumbersofhealthieroff- exoticcactus-feedingmothCactoblastiscactorum(Berg) spring(Hone˘k1993;Tammaruetal.2002),indicatingpossi- (Lepidoptera:Pyralidae)andthenativecactus-feedingmoth bletrade-offstoincreasedbodysize.Fieldstudiesareneeded Melitaraprodenialis(Walker)(Lepidoptera:Pyralidae)ontwo toassesshowinduceddefensesinnaturecouldinfluencethe speciesofFloridaOpuntia.Biol.Invasions11:619–624. population dynamics of C. cactorum, particularly with re- Baldwin,I.T.,andJ.C.Schultz.1983.Rapidchangesintreeleaf gardtotheoveralltrade-offbetweenincreasedpupalsizeand chemistryinducedbydamage:evidenceforcommunication fitness. betweenplants.Science221:277–279. Our discovery that putative HIPVs initiated by a native, Benrey,B.,andR.F.Denne.1997.Theslowgrowth—high coevolved herbivore can induce defense against a newly- mortalityhypothesis:atestusingthecabbagebutterfly. associated insect pest suggests that defense signaling may Ecology78:987–999. haveimportantapplicationsforcontrollingC.cactorum,as Berger,D.,R.Walters,andK.Gotthard.2006.Whatkeepsinsects hasbeensuggestedforotherplantpestspecies(Thaler1999; small?Sizedependentpredationontwospeciesofbutterfly Khanetal.2008;GurrandKvedaras2010;Orreetal.2010; larvae.Evol.Ecol.20:575–589. Simpsonetal.2011).IdentificationandtestingofHIPVsin- Carlton,C.E.,andT.J.Kring.1994.MelitaraprodenialisWalker volvedindefensesignalingofOpuntiaiscurrentlyunderway. onpricklypearinArkansas.SouthwestEntomol.19:23–32. 1062 (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. A.M.Woodardetal. PlantDefenseSignalingCombatsHerbivoreAttack Chen,M.-S.2008.Inducibledirectplantdefenseagainstinsect Kant,M.R.,andI.T.Baldwin.2007.Theecogeneticsand herbivores:areview.Insect.Sci.15:101–114. ecogenomicsofplantherbivoreinteractions:rapidprogresson Coley,P.D.,L.M.Bateman,andT.A.Kursar.2006.Theeffectsof aslipperyroad.Curr.Opin.Genet.Dev.17:519–524. plantqualityoncaterpillargrowthanddefenseagainstnatural Karban,R.2011.Theecologyandevolutionofinducedresistance enemies.Oikos115:219–228. againstherbivores.Funct.Ecol.25:339–347. Cornelissen,T.,andP.Stiling.2006.Doeslownutritionalquality Karban,R.,andI.T.Baldwin.1997.Inducedresponsesto actasaplantdefense?Anexperimentaltestoftheslow-growth, herbivory.TheUniversityofChicagoPress,Chicago,pp.330. high-mortalityhypothesis.Ecol.Entomol.31:32–40. Karban,R.,K.Shiojiri,andS.Ishizaki.2010.Anairtransfer Desurmont,G.A.,M.J.Donoghue,W.L.Clement,andA.A. experimentconfirmstheroleofvolatilecuesin Agrawal.2011.Evolutionaryhistorypredictsplantdefense communicationbetweenplants.Am.Nat.176:381–384. againstaninvasivepest.Proc.Natl.Acad.Sci.U.S.A. Kessler,A.,andI.T.Baldwin.2001.Defensivefunctionof 108:7070–7074. herbivore-inducedplantvolatileemissionsinnature.Science Dicke,M.2009.Behavioralandcommunityecologyofplants 291:2141–2144. thatcryforhelp.PlantCell.Environ.32:654–665. Khan,Z.R.,D.G.James,C.A.O.Midega,andJ.A.Pickett.2008. Dicke,M.,andI.T.Baldwin.2010.Theevolutionarycontextfor Chemicalecologyandconservationbiologicalcontrol.Biol. herbivoreinducedplantvolatiles:beyondthe“cryforhelp”. Control.45:210–224. TrendsPlantSci.15:167–175. Legaspi,J.C.,andB.C.Legaspi.2007.Lifetableanalysisfor Dodd,A.P.1940.Thebiologicalcampaignagainstpricklypear. Cactoblastiscactorumimmatureandfemaleadultsunderfive CommonwealthPricklyPearBoard,Brisbane,pp.177. constanttemperatures:implicationsforpestmanagement. Engelberth,J.,H.T.Alborn,E.A.Schmelz,andJ.H.Tumlinson. Ann.Entomol.Soc.Am.100:497–505. 2004.Airbornesignalsprimeplantsagainstinsectherbivore Legaspi,B.C.,andJ.C.Legaspi.2010.Fieldlevelvalidationofa attack.Proc.Natl.Acad.Sci.U.S.A.101:1781–1785. CLIMEXmodelforCactoblastiscactorum(Lepidoptera: Farmer,E.E.2001.Surface-to-airsignals.Nature411: Pyralidae)usingestimatedlarvalgrowthrates.Environ. 854–856. Entomol.39:368–377. Felton,G.W.,andJ.H.Tumlinson.2008.Plant–insectdialogs: Madsen,J.D.2011.CactusMothDetection&Monitoring complexinteractionsattheplant–insectinterface.Curr.Opin. Network.Availableat: PlantBiol.11:457–463. http://www.gri.msstate.edu/research/cmdmn,GeoResources Frost,C.J.,M.C.Mescher,J.E.Carlson,andC.M.DeMoraes. Institute.Accessed8September2011. 2008.Plantdefenseprimingagainstherbivores:gettingready Mafokoane,L.D.,H.G.Zimmermann,andM.P.Hill.2007. foradifferentbattle.PlantPhysiol.146:818–824. DevelopmentofCactoblastiscactorum(Berg)(Lepidoptera: Gandhi,K.J.K.,andD.A.Herms.2009.Directandindirect Pyralidae)onsixNorthAmericanOpuntiaspecies.Afr. effectsofalieninsectherbivoresonecologicalprocessesand Entomol.15:295–299. interactionsinforestsofeasternNorthAmerica.Biol. Marti,O.G.,R.E.Myers,andJ.E.Carpenter.2008.Rearing Invasions12:389–405. Cactoblastiscactorum(Lepidoptera:Pyralidae)onartificialdiet Gurr,G.M.,andO.L.Kvedaras.2010.Synergizingbiological andOpuntiacladodes.J.Entomol.Sci.43:95–106. control:scopeforsterileinsecttechnique,inducedplant Musser,R.O.,S.M.Hum-Musser,H.Eichenseer,M.Peiffer,G. defensesandculturaltechniquestoenhancenaturalenemy Ervin,J.B.Murphy,andG.W.Felton.2002.Herbivory: impact.Biol.Control.52:198–207. caterpillarsalivabeatsplantdefenses.Nature416:599–600. Habeck,D.H.,andF.D.Bennett.1990.Cactoblastiscactorum Neunzig,H.H.,andE.G.Munroe.1997.Pyraloidea.Pyralidae (Berg)(Lepidoptera:Pyralidae),aPhycitinenewtoFlorida. (part),Phycitinae(part).Pp.157inR.B.Dominick,D.C. EntomologyCircular333.FloridaDepartmentofAgriculture Ferguson,J.G.Franclemont,R.W.Hodges,eds.Themothsof andConsumerServicesDivisionofPlantIndustry, AmericanorthofMexico,fascicle15.4.TheWedge Florida. EntomologicalResearchFoundation,Washington,D.C. Ha¨ggstro¨m,H.,andS.Larsson.1995.Slowlarvalgrowthona Orre,G.U.S.,S.D.Wratten,M.Jonsson,andR.J.Hale.2010. suboptimalwillowresultsinhighpredationmortalityinthe Effectsofanherbivore-inducedplantvolatileonarthropods leafbeetleGalerucellalineola.Oceologia104:308–315. fromthreetrophiclevelsinbrassicas.Biol.Control53:62–67. Heil,M.,andR.Karban.2010.Explainingevolutionofplant Pare´,P.W.,H.T.Alborn,andJ.H.Tumlinson.1998.Concerted communicationbyairbornesignals.TrendsEcol.Evol. biosynthesisofaninsectelicitorofplantvolatiles.Proc.Natl. 25:137–144. Acad.Sci.U.S.A.95:13971–13975. Heil,M.,andJ.C.SilvaBueno.2007.Within-plantsignalingby Parker,J.D.,D.E.Burkepile,andM.E.Hay.2006.Responseto volatilesleadstoinductionandprimingofanindirectplant commenton“Opposingeffectsofnativeandexoticherbivores defenseinnature.Proc.Natl.Acad.Sci.U.S.A.104:5467–5472. onplantinvasion”.Science313:298b. Hone˘k,A.1993.Intraspecificvariationinbodysizeandfecundity Peng,J.Y.,Z.H.Li,H.Xian,J.H.Huang,S.H.Jia,X.X.Miao, ininsects:ageneralrelationship.Oikos66:483–492. andY.P.Huang.2005.Preliminarystudiesondifferential (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. 1063 PlantDefenseSignalingCombatsHerbivoreAttack A.M.Woodardetal. defenseresponsesinducedduringplantcommunication.Cell. Solis,M.A.,S.D.Hight,andD.R.Gordon.2004.Trackingthe Res.15:187–192. cactusmoth,CactoblastiscactorumBerg.,asitfliesandeatsits Pimentel,D.1963.Introducingparasitesandpredatorstocontrol waywestwardintheU.S.NewsoftheLepidopterist’sSociety nativepests.Can.Entomol.95:785–792. 46:3–7. Prime-A-PlantGroup:U.Conrath,G.J.M.Beckers,V.Flors,P. Tammaru,T.,T.Esperk,andI.Castellanos.2002.Noevidencefor Garc´ıa-Agust´ın,G.Jakab,F.Mauch,M.A.Newman,C.M. costsofbeinglargeinfemalesofOrgyiaspp.(Lepidoptera, Pierterse,B.Poinssot,M.J.Pozo,etal.2006.Priming:getting Lymantriidae):largerisalwaysbetter.Oecologia133: readyforbattle.Mol.PlantMicrobeInteract.19:1062–1071. 430–438. Raupp,M.J.,P.M.Shrewsbury,andD.A.Herms.2010.Ecology Thaler,J.S.1999.Jasmonate-inducibleplantdefensescause ofherbivorousarthropodsinurbanlandscapes.Annu.Rev. increasedparasitismofherbivores.Nature399:686–688. Entomol.55:19–38. vanHulten,M.,M.Pelser,L.C.vanLoon,C.M.J.Pieterse,andJ. Sauby,K.E.2009.TheecologyofCactoblastiscactorum(Berg) Ton.2006.Costsandbenefitsofprimingfordefensein (Lepidoptera:Pyralidae)inFlorida.Master’sthesis,Mississippi Arabidopsis.Proc.Natl.Acad.Sci.U.S.A.103:5602–5607. StateUniversity,Mississippi. Weinhold,A.,andI.T.Baldwin.2011.Trichome-derived Simonson,S.E.,T.J.Stohlgren,L.Tyler,W.P.Gregg,R.Muir, O-acylsugarsareafirstmealforcaterpillarsthattags andL.J.Garrett.2005.Preliminaryassessmentofthepotential themforpredation.Proc.Natl.Acad.Sci.U.S.A.108: impactsandrisksoftheinvasivecactusmothCactoblastis 7855–7859. cactorumBerg.,intheU.S.andMexico.Pp.1–32inFinal Wu,J.,andI.T.Baldwin.2009.Herbivoryinducedsignalingin ReportoftheInter.AtomicEnergyAgency. plants:perceptionandaction.PlantCell.Environ. Simpson,M.,G.M.Gurr,A.T.Simmons,S.D.Wratten,D.G. 32:1161–1174. James,G.Leeson,andH.I.Nicol.2011.Insectattractionto Wu,J.,andI.T.Baldwin.2010.Newinsightsintoplantresponses syntheticherbivore-inducedplantvolatile-treatedfieldcrops. totheattackfrominsectherbivores.Annu.Rev.Genet. Agr.ForestEntomol.13:45–57. 44:1–24. 1064 (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd.