ebook img

Homological Properties of Finite Partially Ordered Sets [PhD thesis] PDF

138 Pages·2008·0.662 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Homological Properties of Finite Partially Ordered Sets [PhD thesis]

Homological Properties of Finite Partially Ordered Sets Thesis submitted for the degree of “Doctor of Philosophy” by Sefi Ladkani Submitted to the Senate of the Hebrew University January 2008 This work was carried out under the supervision of Professor David Kazhdan Abstract In this work we study the homological properties of finite partially ordered sets as reflected in theirderivedcategoriesofdiagrams. Thissubjectstandsatthejunctionoftheareasofcombina- torics,topology,representationtheoryandhomologicalalgebra. Background Since their introduction by Verdier and Grothendieck in order to formulate duality in algebraic geometry, triangulated categories in general, and derived categories in particular, have found applicationsindiverseareasofmathematicsandmathematicalphysics. Triangulated categories have been successfully used to relate objects of different nature, thusformingbridgesbetweenvariousareasofalgebraandgeometry. AnexampleisBeilinson’s result[6]ontheequivalenceofthederivedcategoryofcoherentsheavesoveraprojectivespace (whichisofcommutativenature)andthederivedcategoryoffinitedimensionalmodulesovera certainfinitedimensional,non-commutative,algebra. Thisresultcanbeseenasastartingpoint ofnon-commutativegeometry. Anotherexample,motivatedbyitsapplicationstophysics,isKontsevich’sformulation[56] of the Homological mirror symmetry conjecture as an equivalence between a certain derived categoryofcoherentsheavesoveranalgebraicvarietyandatriangulatedcategoryofothernature (theFukayacategory). The question of equivalence of two derived categories arising from objects of the same na- ture has also attracted a growing interest. For example, the question when two algebraic va- rieties have equivalent derived categories of sheaves has been recently studied by Bondal and Orlov [11]. Another, earlier, example is Rickard’s result [73], characterizing when two rings have equivalent derived categories of modules, in terms of the existence of a so-called tilting complex. Rickard’s result leaves something to be desired, though, as for some pairs of algebras, it is currentlynotoriouslydifficult,andsometimesevenimpossible,todecidewhetherthereexistsa tilting complex. Such a difficulty is apparent in the still unsolved Broue´’s conjecture asserting derivedequivalencesbetweencertainblocksofgroupalgebras[78]. i (cid:127)(cid:127)~~~~~~•@@@@@@(cid:31)(cid:31) •@@@@@@(cid:31)(cid:31) (cid:127)(cid:127)~~~~~~• •@@@@@@(cid:31)(cid:31) (cid:127)(cid:127)~~~~~~• •(cid:15)(cid:15) • • Figure1: Hassediagramsoftwonon-isomorphic,yetuniversallyderivedequivalentposets. The problem Weinvestigatesimilarquestionsforderivedcategoriesarisingfromfinitepartiallyorderedsets. Afinitepartiallyorderedset(poset)isnaturallyendowedwithastructureofatopologicalspace. The finite spaces obtained in this way are capable of modeling several quantitative topological properties, such as the homology and homotopy groups, of various well-behaved manifolds in Euclideanspaces[66]. A poset can also be considered as a small category, allowing one to form the category of functors X → A, denoted AX, from a poset X to an abelian category A. The category AX, whose objects are also known as diagrams, is abelian and can be regarded as a category of sheavesandsometimesofmodules,asoutlinedbelow. First,byviewingaposetasatopologicalspace,diagramscanbeconsideredassheavesover thatspace. Tworecentapplicationsofsheavesoverposetsincludethecomputation,byDeligne, GoreskyandMacPherson[25],ofthecohomologyofarrangementsofsubspacesinarealaffine space, and the definition, by Karu [49], of intersection cohomology for general polytopes, in ordertostudytheirh-vectors. Second,whenAisthecategoryoffinitedimensionalvectorspacesoverafieldk,diagrams canalsobeidentifiedwithmodulesovertheincidencealgebraofX overk. Definition. WesaythattwoposetsXandY areuniversallyderivedequivalentif,foranyabelian categoryA,the(bounded)derivedcategoriesofdiagramsDb(AX)andDb(AY)areequivalent (astriangulatedcategories). TwoposetsX andY arederivedequivalent overafieldk iftheirincidencealgebrasoverk arederivedequivalent. Our main research aim is the study of these derived categories of diagrams, and in partic- ular the questions when two posets are (universally) derived equivalent and how the derived equivalenceisrelatedtothecombinatorialpropertiesoftheposetsinquestion. As diagrams can be identified with sheaves and sometimes even with modules, both geo- metrical tools from algebraic geometry and algebraic tools from representation theory can be appliedwhenstudyingthequestionofderivedequivalence. Thederivedequivalencerelation,eitheruniversalornot,isstrictlycoarserthanisomorphism. AsimpleexampledemonstratingthisisgiveninFigure1. However,thereisnoknownalgorithm whichdecides,giventwoposets,whethertheyarederivedequivalentornot. ii • • •@ • •@ • ~ @ @ ~ ~ @ @ ~ ~ @ @~ ~ @ ~@ ~ @ ~ @ ~ @ ~ @ (cid:127)(cid:127)~ (cid:15)(cid:15) (cid:15)(cid:15) (cid:31)(cid:31) (cid:15)(cid:15) (cid:15)(cid:15) (cid:127)(cid:127)~ (cid:31)(cid:31) (cid:15)(cid:15) •(cid:15)(cid:15) @(cid:127)(cid:127)~O@~O@~O~@O~@O~@~@O(cid:31)(cid:31)O•O(cid:15)(cid:15) O@(cid:127)(cid:127)~O@~@~O~@O~@O~@O~@’’(cid:31)(cid:31)•(cid:15)(cid:15) @O@O@O@O@O@@O(cid:31)(cid:31)OOOOOOOO’’ •@@@@@@@(cid:31)(cid:31)•(cid:15)(cid:15) @@@@@@@(cid:31)(cid:31)•(cid:15)(cid:15) (cid:127)(cid:127)~~~~~~~• • •@ • •@ • • • @ @ ~ ~ @ @ ~ ~ @ @~ ~ @ ~@ ~ @ ~ @ ~ @ ~ @ ~ (cid:31)(cid:31) (cid:15)(cid:15) (cid:15)(cid:15) (cid:127)(cid:127)~ (cid:31)(cid:31) (cid:15)(cid:15) (cid:127)(cid:127)~ (cid:15)(cid:15) (cid:15)(cid:15) • • • • • • Figure2: Hassediagramsoftwoposetsderivedequivalentbythebipartiteconstruction. Therearetwodirectionstopursuehere. Thefirstistofindinvariantsofderivedequivalence, that is, combinatorial properties of a poset which are shared among all other posets derived equivalent to it. Examples of such invariants are the number of points, the Z-congruency class oftheincidencematrix,andtheBettinumbers. Theseconddirectionistosystematicallyconstruct,givenaposethavingcertaincombinato- rial structure, new posets that are guaranteed to be derived equivalent to it. An example of an analogousconstructionintherepresentationtheoryofquiversandfinitedimensionalalgebrasis theBernstein-Gelfand-Ponomarevreflection[9]. The results Constructionsofderivedequivalencesofposetsandotherobjects Wehavefoundseveralkindsofcombinatorialconstructionsproducingderivedequivalencesand they are described in Part I of this work. The common theme of these constructions is the structuredreversaloforderrelations. Thebipartiteconstruction ThisconstructionisdescribedinChapter1,whereweshowthataposethavingabipartitestruc- ture can be mirrored along that structure to obtain a derived equivalent poset. An example is giveninFigure2. Topresentthisconstructionmoreprecisely,weintroducethenotionofalexicographicsum ofacollectionofposetsalongaposet,whichgeneralizestheknownnotionofanordinalsum. If {X } isacollectionofposetsindexedbyaposetS,thelexicographicsumoftheX alongS s s∈S s istheposetwhoseunderlyingsetisthedisjointunionoftheX ,andtwoelementsarecompared s firstbasedontheindicesofthesetstheybelongto(usingthepartialorderonS),andwhenatie occurs–i.e.theybelongtothesamesetX ,accordingtothepartialorderinsideX . s s AposetS iscalledbipartiteifitsHassediagramisabipartitedirectedgraph. Theorem. LetS beabipartiteposet. Thenthelexicographicsumofacollectionofposetsalong S isderivedequivalenttothelexicographicsumofthesamecollectionalongtheoppositeposet iii Sop. Thisconstructionisinspiredbythegeometricalviewpointofdiagramsassheaves,building on the notion of a strongly exceptional collection introduced in the study of derived categories ofsheavesoveralgebraicvarieties. Asacorollary,weseethatthederivedequivalenceclassofanordinalsumofanytwoposets doesnotdependontheorderofsummands. However,wegaveanexampleshowingthatthisis nottrueforthreesummands. Byusingtheother,algebraic,viewpointofdiagramsasmodules,wehaveextendedtheabove result to general triangular matrix rings, as described in Chapter 2. Instead of formulating the resultinitsmostgenerality(seeTheorem2.4.5),weshalldemonstrateitinthecaseofalgebras overafield,asexpressedinthefollowingtheorem. Theorem. Let k be a field and let R, S be k-algebras. Assume that (at least) one of R, S is finitedimensionalandoffiniteglobaldimension. ThenforanyfinitedimensionalS-R-bimodule M ,thetriangularmatrixalgebras R S (cid:18) (cid:19) (cid:18) (cid:19) R M S DM and 0 S 0 R arederivedequivalent,wherethedualDM = Hom (M,k)isviewedasanR-S-bimodule. k Generalizedreflections This construction, described in Chapter 3, produces universal derived equivalences that can be considered as generalized reflections, described in very simple, explicit combinatorial terms. This vastly generalizes the well-known Bernstein-Gelfand-Ponomarev reflections for quivers, and has found applications in the representation theory of algebras for the study of the partial orders of tilting modules and cluster-tilting objects over path algebras of quivers, as described laterinPartIIofthiswork. Weshalldemonstratethisconstructioninthefollowingsituation,calledflip-flop. Foramore general setup, see Section 3.1.1. If X and Y are two posets and f : X → Y is an order- preserving map, one can consider two partial orders ≤f and ≤f on the disjoint union X tY, + − definedasfollows. InsideeachofthesetsX andY,bothordersagreewiththeoriginalorders, butbetweenthem,x ≤f y iff(x) ≤ y andy ≤f xify ≤ f(x),wherex ∈ X andy ∈ Y. + − Theorem. Theposets(X tY,≤f )and(X tY,≤f )areuniversallyderivedequivalent. + − NotethatthistheoremistruealsowhentheposetsX andY areinfinite. Themaintoolused intheconstructionisthenotionofaformula,whichconsistsofcombinatorialdatathatproduces, simultaneously for any abelian category A, a functor between the categories of complexes of diagrams over two posets Z and Z0 with values in A, inducing a triangulated functor between the corresponding derived categories. When Z and Z0 have certain combinatorial structure, as forexampleintheaboveconstructions,webuildsuchfunctorsthatareequivalences. iv (cid:15)(cid:15)(cid:15)•@@@(cid:31)(cid:31) (cid:127)(cid:127)~~~~(cid:20)(cid:20)(cid:20)•@@@@(cid:31)(cid:31) •(cid:7)(cid:7)(cid:15)(cid:15)@(cid:127)(cid:127)~(cid:15)~@(cid:15)(cid:15)~@(cid:15)@(cid:15)•••@(cid:15)(cid:15)@(cid:7)(cid:7)(cid:15)(cid:7)(cid:7)(cid:15)(cid:15)(cid:15)@@@(cid:127)(cid:127)~(cid:15)(cid:15)@@~@(cid:15)(cid:15)(cid:15)~@@@(cid:15)(cid:31)(cid:31)@(cid:15)••@@(cid:7)(cid:7)(cid:15)(cid:7)(cid:7)(cid:15)(cid:15)(cid:15)(cid:15)@@@(cid:15)(cid:15)(cid:15)@~@@(cid:15)(cid:15)(cid:15)(cid:15)(cid:15)(cid:15)~@@@(cid:15)(cid:15)(cid:15)(cid:31)(cid:31)(cid:31)(cid:31)(cid:31)(cid:31)(cid:15)(cid:15)(cid:15)••••(cid:7)(cid:7)(cid:15)(cid:7)(cid:7)(cid:15)(cid:15)(cid:15)@@(cid:127)(cid:127)~(cid:15)(cid:15)@~@(cid:15)(cid:15)(cid:15)(cid:15)~@@(cid:15)(cid:15)(cid:31)(cid:31)(cid:31)(cid:31)(cid:15)(cid:15)•• ••(cid:15)(cid:15)(cid:7)(cid:7)(cid:15)(cid:7)(cid:7)(cid:15)(cid:15)(cid:15)@U(cid:15)(cid:15)@(cid:15)(cid:15)U@(cid:15)(cid:15)(cid:15)(cid:15)@U(cid:15)(cid:15)(cid:31)(cid:31)(cid:15)(cid:15)U••U(cid:10)(cid:10)(cid:20)(cid:10)(cid:10)(cid:20)(cid:20)(cid:20)U(cid:20)(cid:20)(cid:127)(cid:127)~(cid:127)(cid:127)~(cid:127)(cid:127)~U(cid:20)(cid:20)(cid:20)(cid:20)~~~U(cid:20)(cid:20)U(cid:20)(cid:20)~~~(cid:20)(cid:20)U(cid:20)(cid:20)~~~U(cid:20)(cid:20)(cid:20)(cid:20)U(cid:20)(cid:20)U(cid:20)(cid:20)••••U(cid:15)(cid:15)U(cid:10)(cid:10)(cid:20)(cid:10)(cid:10)(cid:20)(cid:20)(cid:20)UU(cid:20)(cid:20)(cid:127)(cid:127)~(cid:127)(cid:127)~(cid:20)(cid:20)(cid:20)(cid:20)U~~U(cid:20)(cid:20)(cid:20)(cid:20)~~(cid:20)(cid:20)UU(cid:20)(cid:20)~~(cid:20)(cid:20)(cid:20)**U(cid:20)(cid:20)••U(cid:7)(cid:7)(cid:15)(cid:7)(cid:7)(cid:15)U(cid:15)(cid:15)(cid:15)(cid:15)U(cid:15)(cid:15)(cid:15)(cid:15)U(cid:15)(cid:15)(cid:15)(cid:15)**(cid:15)(cid:15)••(cid:15)(cid:15) (cid:31)(cid:31) (cid:7)(cid:7)(cid:15)(cid:127)(cid:127)~ • • Figure3: Hassediagramsoftwouniversallyderivedequivalentposetsoftiltingmodulesofpath algebrasofquiverswhoseunderlyinggraphistheDynkindiagramA . 4 Combinatorialapplicationsfortiltingobjects In Part II of this work we demonstrate that the flip-flop constructions appear naturally in com- binatorialcontextsconcerningpartialordersoftiltingmodulesandclustertiltingobjectsarising frompathalgebrasofquivers. First we show that the posets of tilting modules, in the sense of Riedtmann-Schofield [75], of any two derived equivalent path algebras of quivers without oriented cycles, are always uni- versallyderivedequivalent. ThisisdescribedinChapter4. AnexampleisgiveninFigure3. Thenweshowasimilarresultfortheposetsofclustertiltingobjects,describedinChapter5. Cluster categories corresponding to quivers without oriented cycles were introduced in [16] as arepresentationtheoreticapproachtotheclusteralgebrasintroducedandstudiedbyFominand Zelevinsky [28]. In these categories one can define, similarly to tilting modules, cluster tilting objects, which correspond to the clusters of the cluster algebra. The set T of cluster tilting CQ objects in the cluster category of a quiver Q without oriented cycles admits a partial order as describedin[48]. Theorem. LetQandQ0betwoquiverswithoutorientedcycleswhosepathalgebrasarederived equivalent. ThentheposetsT andT areuniversallyderivedequivalent. CQ CQ0 When the quiver Q is of finite type, the poset T is a Cambrian lattice as introduced by CQ Reading [72], defined as a certain quotient of the weak order on the corresponding Coxeter group. ItsHassediagramisthe1-skeletonofapolytopeknownasthecorrespondinggeneralized Associhedron. Piecewisehereditarycategoriesandposets InPartIIIoftheworkwestudyposetswhosecategoriesofdiagrams(overafield)arepiecewise hereditary, that is, derived equivalent to an abelian category of global dimension one. One v should think of such categories as the simplest ones after the semi-simple ones. We present threeresultsonsuchcategoriesandposets. Thefirstresultconcernstheglobaldimensionofapiecewisehereditaryabeliancategory. In general,thisquantitycanbearbitrarilylarge. However,weshowthatforapiecewisehereditary categoryofdiagramsoveraposet,theglobaldimensioncannotexceed3. Moreover,weextend this result to categories of modules over sincere algebras and more generally to a wide class of finitelengthpiecewisehereditarycategoriessatisfyingcertainconnectivityconditionsexpressed via their graphs of indecomposable objects. Note that the bound of 3 is sharp. This result is describedinChapter6. Second,weexploretherelationshipsbetweenspectralpropertiesoftheCoxetertransforma- tionandpositivitypropertiestheEulerform,forfinitedimensionalalgebraswhicharepiecewise hereditary. Weshowthatforsuchalgebras,iftheCoxetertransformationisoffiniteorder,then the Euler bilinear form is non-negative. We also demonstrate, through incidence algebras of posets, that the assumption of being piecewise hereditary cannot be omitted. This is done in Chapter7. Finally, we give a complete description of all the canonical algebras (which form a special classofpiecewisehereditaryalgebras,introducedbyRingel[76])thatarederivedequivalentto incidence algebras of posets. This is expressed in the following theorem, whose proof can be foundinChapter8. Theorem. Acanonicalalgebraoftype(p,λλλ)overanalgebraicallyclosedfieldisderivedequiv- alent to an incidence algebra of a poset if and only if the number of weights of p is either 2 or 3. Somepartsofthisworkhaveappearedinjournalpapers;Chapter1isbasedonthepaper[59] andChapters6,7and8arebasedonthepapers[57],[60]and[58],respectively. vi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.