ebook img

Holonomy and parallel transport in the differential geometry of the space of loops and the groupoid of generalized gauge transformations PDF

0.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Holonomy and parallel transport in the differential geometry of the space of loops and the groupoid of generalized gauge transformations

HOLONOMY AND PARALLEL TRANSPORT IN THE DIFFERENTIAL GEOMETRY OF THE SPACE OF LOOPS AND THE GROUPOID OF 4 0 GENERALIZED GAUGE TRANSFORMATIONS 0 2 CARLOA.ROSSI n a J ABSTRACT. Themotivationforthispaperstems[4]fromtheneedtoconstructexplicit 5 isomorphismsof(possiblynontrivial)principalG-bundlesonthespaceofloopsor,more 1 generally, ofpathsinsomemanifoldM,overwhichIconsiderafixedprincipalbundle P;theaforementionedbundlesarethenpull-backsofP w.r.t.evaluationmapsatdifferent ] points. G Theexplicitconstructionoftheseisomorphismsbetweenpulled-backbundlesrelieson D thenotionofparalleltransport.Iintroduceanddiscussextensivelyatthispointthenotion ofgeneralizedgaugetransformationbetween(apriori)distinctprincipalG-bundlesover . h thesamebaseM; onecanseeimmediately thattheparalleltransportcanbeviewedas t ageneralizedgaugetransformationfortwospecialkindofbundlesonthespaceofloops a orpaths;atthispoint,itispossibletogeneralizethepreviousargumentsformoregeneral m pulled-backbundles. [ Finally,Idiscusshowflatnessofthereferenceconnection,w.r.t.whichIconsiderholo- nomyandparalleltransport,isrelatedtohorizontalityoftheassociatedgeneralizedgauge 1 transformation. v 0 8 1 1 CONTENTS 0 4 1. Introduction 2 0 2. Backgrounddefinitions 3 / h 2.1. Thebridgebetweenconnection1-formsandhorizontalbundle 4 t 3. Holonomyandparalleltransport 5 a m 3.1. Holonomy:definitionandmainproperties 6 3.2. Paralleltransport:definitionandmainproperties 7 : v 4. Isomorphismsofprincipalbundlesandgeneralizedgaugetransformations 9 i X 4.1. Thegroupoidofgeneralizedgaugetransformations 14 5. Somegeneralconstructionsforgroupoids 18 r a 5.1. TheproductgroupoidoftwogroupoidsG,H 19 5.2. Morphismsofgroupoids 19 5.3. Theoppositegroupoid 20 5.4. Left-andrightG actionsforthegroupoidG 20 5.5. ThegeneralizedconjugationofG 21 5.6. Equivariantmapsbetweengroupoid-spaces 22 5.7. Someexplicitcomputationsforthegroupoidofgeneralizedgaugetransformations 23 6. Applicationstobundlesonthespaceofloopsorpaths 23 6.1. RestrictiontotheboundaryofI 27 7. Someconsequencesofflatnessrelatedtoholonomyandparalleltransport 28 7.1. Connectionsonthefibredproductoftwoprincipalbundles 29 C.A.RossiacknowledgespartialsupportofAlyKaufmanFellowship. 1 2 C.A.ROSSI 7.2. Compositionpropertiesandinversionoftheparalleltransport 30 7.3. Holonomyandflatness 32 7.4. Flatnessandparalleltransport 37 8. Applicationsofthegeneralizedgaugetransformationassociatedtotheparalleltransport:iteratedChenintegrals 41 8.1. Paralleltransportandsimplices 42 8.2. Flatnessandparalleltransportonsimplices 43 8.3. IteratedChen-typeintegrals 44 8.4. Restrictionstoboundaryfacesofsimplices 48 8.5. ThegeneralizedholonomyandChen’siteratedintegrals 48 AppendixA. Theorientationofthenthsimplex△ 54 n References 55 1. INTRODUCTION Inthelastsectionof[4],wheretheTopologicalQuantumFieldtheoreticalbackground behindthe higher-ordercohomologygroupsof the space of knotsin Rm, for m ≥ 3, of Cattaneo–Cotta-Ramusino–Longoni[2]wasexplicitlyconstructed,somehintsweremen- tioned towards possible generalizations of the computationsin [4], dealing with iterated Chen-typeintegrals,toanontrivialprincipalG-bundleP;infact,themainobjectthrough- outthe paper was the so-called generalizedholonomy, viewed as an iterated integral, on somefixedprincipalG-bundleP,whichweassumedtobetrivialinordertosimplifythe computations. Inthelastsection, weaddressedinformallytheproblemofdefiningiteratedintegrals, asourexpressionfortheparalleltransport,foranontrivialbundleP. Thesameproblem arisesalsoinSection2of[3]: theauthorsdiscussthenotionofiteratedChenintegralsin relationshipwithso-called“specialconnections”onthespaceofhorizontalpathsina(not necessarilytrivial)principalbundleovera4-manifoldM,namelytheyneediteratedChen integralsof formsof the adjointtype on M in order to computethe curvatureof special connections. AnexplicitformulaisdisplayedtherefortheChenbracket;still, astheau- thorsthemselvespointedout,itiswithoutdetails,towhichtheyplannedtodedicatesome furtherpaper.Oneofthemainsubtletiesofthetaskin[3]and[4]liestherein,thatweneed to identifypulled-backbundlesof P on the spaceof loops(or, moregenerally,of paths) in a generalmanifoldM w.r.t. evaluationmaps at differentpoints. We sketched without detailsthereinsomeargumentsleadingtotheanswer;inparticular,wepointedouttheim- portanceinthistaskoftheholonomyand,moregenerally,oftheparalleltransport.Infact, theparalleltransport,whichdependsexplicitlybyitsveryconstructiononaconnectionA onP,definesanisomorphismbetweentwoparticulartypeofpulled-backbundlesonthe spaceofloopsorpathsinM. Inthepresentpaper,Iexplainalldetailsofthisconstruction,performingthecomplete computationswehintedatinthelastsectionof[4]. Thepaperisorganisedasfollows: in Section2, Irecallthemainnotions,namelyconnectionsonprincipalG-bundlesoverthe manifoldM,andIdiscussthetwoequivalentwaysofdefiningaconnection,sinceIwill makeuseofthembothinthesubsequentcomputations. In Section 3, I recall the notions of holonomy w.r.t. a chosen connection A of a loop γ in M and parallel transport w.r.t. A of a path γ; I then state and prove two technical lemmatacontaininginformationaboutsomesortofequivariancedisplayedbyholonomy andparalleltransportw.r.t.theactionsofthestructuregroupGofP andthegaugegroup HOLONOMYANDPARALLELTRANSPORT... 3 G of P. The contentsof the first two sections are standardfacts in gaugetheory; I will P nonethelessreviewtheminsomedetailtofixconventionsandnotations. InSection4,IdiscussthenotionofisomorphismsofG-principalbundles(aprioridis- tinct) over M.It is well known that fibre-preserving, G-equivariant automorphisms of a fixed G-principalbundles are in one-to-onecorrespondenceto maps from P to G, equi- variantw.r.t.conjugationonG;similarly,fibre-preserving,G-equivariant(iso)morphisms between (a priori distinct) principal G-bundles over the same base space M are in one- to-onecorrespondencetowhatIcallgeneralizedgaugetransformations. Thesearemaps fromthefibredproductoftheaforementionedbundles(aconceptsomehowmimickingthe notion of Whitney sum of vector bundles) with values in G, equivariant w.r.t. an action of the product group G×G on G, which, when restricted to the diagonal subgroup G, restrictstotheconjugationonG. Thekeyelementoftheabovecorrespondenceliesinthe canonicalmapfromthefibredproductofabundleP withitselfassociatedtotheidentity mapofP;Ialsodiscussitsproperties. Ithenproceedwiththediscussionofthestructure ofthe setofgeneralizedgaugetransformations;itturnsouttobe (obviously)a groupoid over the category of principal G-bundles over M; this notion generalizes that of gauge group,andIthereforespeakofthe groupoidofgeneralizedgaugetransformationsofM andG. InSection5, I partlyreview,partlyexplainsome generalconstructionsforgroupoids; inparticular,IrecalltheconceptofactionsofgroupoidsonsetsandconstructwhatIcall thegeneralizedconjugationforgroupoids,whichisanactionoftheproductofagroupoid with itself on the groupoiditself, which mimicssomehowthe conjugationof a groupon itself, a notionwhichno longermakessense fora groupoid. I also discuss the notionof equivariantmorphismsfrom(leftorright)groupoidactionstoother(leftorright)groupoid actions. InSection6,Iinterpretholonomyandparalleltransportasgeneralizedgaugetransfor- mationsforaparticulartypeofpulled-backbundlesoverthespaceofloopsorpathsinM of a fixed principalbundleP over M w.r.t. evaluationmaps. Thus, there is a map asso- ciating to a connection on P a generalized gauge transformation; interpreting the gauge groupofP asagroupoid,hencethespaceofconnectionsonP asaG -space,thetechni- P callemmataofSection3maybeinterpretedinthesensethatthereisanequivariantmap of groupoidactions from the space of connectionsto the groupoidof generalized gauge transformations. In Section 7, I discuss the important consequences of the restriction of the map dis- cussed in Section 6 between the space of connections and the groupoid of generalized gauge transformationsto the space of flat connections. Namely, the flatness (which has a non-abelian cohomologicalinterpretation) implies in a highly nontrivial way the hori- zontality of a the corresponding generalized gauge transformation; the key step for this achieving this result lies in the well-known fact that flat connections induce representa- tionsofthehomotopygroupofM. Acknowledgment. I thank A. S. Cattaneo and G. Felder for many inspiring suggestions, mainlyonthesubjectofgroupoidsandforconstantsupport;Ialsoacknowledgethepleas- antatmosphereat the Departmentof Mathematicsof the Technion,where thiswork was accomplished. 2. BACKGROUND DEFINITIONS Inthissection, I introducethe mainnotionsandnotationsI use throughoutthepaper; amongthem,Iwanttodiscussindetailthenotionofconnectiononprincipalbundles.Let 4 C.A.ROSSI π menoticethatIworkonageneralprincipalbundleP 7→M overarealmanifoldM (ifnot otherwise stated, M is assumed to be connectedand paracompact);I do notassume any particularpropertyonthestructuregroupG. BygIdenotethecorrespondingLiealgebra. Definition2.1. A connection1-formontheprincipalbundleP isa 1-formAonP with valuesing,satisfyingthetwofollowingrequirements: i) (Equivariance) (2.1) R∗A=Ad(g−1)A, g wherebyR Ihavedenotedthe(free)rightactionofGonP. g ii) (Verticality)Foranyξ ∈g, (2.2) A (T L(ξ))=ξ, ∀p∈P; p e p here,IhavedenotedbyR thefibreinjectionG→P givenbyg 7→pg. p Forourpurposes,itisbettertointroduceaslightlydifferentcharacterisationofconnec- tions;later,Iwilldiscusstherelationshipbetweenthem. Firstofall,atangentvectorX toP atthepointpissaidtobevertical,ifitsatisfiesthe equation T π(X)=0. p TheverticalspaceV P, consistingofallverticaltangentvectorsatp, foranyp ∈ P, is p isomorphictotheLie-algebragvia ξ 7→T L (ξ), ξ ∈g. e p It turns out that the vertical spaces V P can be glued together to give a smooth vector p bundle, the so-called vertical bundle VP (whose typical fibre is isomorphic to the Lie algebrag);itisclearlyasubbundleofTP. Alas,thereisinprinciplenocanonicalwaytodefineacomplementofVP w.r.t.Whit- neysum,i.e.thereisnocanonicalbundleHP suchthatVP ⊕HP =TP. Itturnsoutthat thechoiceofsuchacomplementarybundlereliesonthechoiceofaconnection1-formA onP,asitismotivatedbythefollowingdefinition: Definition2.2. Givenaconnection1-formAonP,atangentvectorX toP atpissaid p tobeA-horizontalifthefollowingequationholds: A (X )=0. p p (Forthesakeofbrevity,whentheconnection1-formAisclearfromthecontext,Isimply speakofhorizontalvectors.) 2.1. Thebridgebetweenconnection1-formsandhorizontalbundle. Idiscuss,forthe sakeofcompleteness,howaconnection1-formAonP givesrisetoasmoothassignment toanyp∈P ofasubspaceH P ⊂T P,suchthatthefollowingtworequirementshold: p p i) T P =V P ⊕H P; p p p ii) H P =T R (H P),foranyg ∈G, pg p g p andviceversa. Infact,thetworequirementslistedabovearealsoanalternativedefinition of connectionas a way of splitting the tangentbundle of P into the Whitney sum of the verticalbundle,whichisclearlyG-invariantasaconsequenceoftheidentity R ◦L =L ◦c g−1 , ∀p∈P,g ∈G, g p pg andsomehorizontalbundle. (cid:0) (cid:1) HOLONOMYANDPARALLELTRANSPORT... 5 Given such an assignment, it is possible to define a correspondingconnection1-form via (2.3) A (X ): =ξ , p p Xp where ξ is the uniqueelementof g which correspondsto the verticalpartof X w.r.t. Xp p theabovesplitting,i.e. T L ξ =Xv, e p Xp p whereXv istheverticalpartofX w.r.t.theabovesplitting. Itfollowsimmediatelythat p p (cid:0) (cid:1) thehorizontalspaceatp ∈ P isexactlythe kernelofA . Theverydefinitionofvertical p space and Equation (2.3) imply together that A satisfies (2.2). The invariance given by Conditionii)aboveensuresthatbothprojectionsintoverticalandhorizontalsubspaceare G-invariant,whichinturnleadsto(2.1). On the other hand, given a connection1-formA on P, the correspondingsplitting of TP atsomepointp∈P isgivenby X = X −XA +XA, XA: =T L (A (X )), p∈P. p p p p p e p p p Infact,by(2.2),iti(cid:0)seasytopr(cid:1)ovethatthelinearoperatorTeLp◦Apistheprojectiononto theverticalsubspace;itskernelisthereforethehorizontalsubspacecorrespondingtothe choiceofA. Condition(2.1),inturn,alongsidetheidentity L ◦c g−1 =R ◦L , ∀p∈P,g ∈G, pg g p ensures that the correspondin(cid:0)g dis(cid:1)tribution is G-equivariant (c denotes the conjugation on G). Finally, let me spend some words on the concept of gauge transformation of a principalG-bundleP overM. AgaugetransformationσofP isa(smooth)mapfromP toP,enjoyingthefollowingtwoproperties: π◦σ =π, σ(pg)=σ(p)g, ∀p∈P,g ∈G. ThefirstconditionmeansthatanygaugetransformationrespectsthefibresofP;thesecond onemeansthatσisequivariantw.r.t.the(right)G-actiononP.Later,wewillseethatthere isanotherwayofdefininggaugetransformationsofabundleP, but, forthemoment,let meskiptheproblem. AnotherproblemIwilladdressto lateristhat, infact, anygaugetransformationisan isomorphism;theproofofthisfactiseasy,butIprefertopostponeittoSection4,deserving itatreatmentinamoregeneralcontext. Let me notice that this last fact that means that the set of gauge transformationsis a groupw.r.t.theproductoperationgivenbycomposition;hence,itmakessensetospeakof thegaugegroupofaprincipalbundleP,whichIdenotebyG . P Finally,thegaugegroupG operatesonthespaceofconnectionsonP,whichIdenote P byA = A ,tomakemanifestthedependenceonthechosenbundleP;the(right)action P isgivenexplicitlyby Aσ: =σ∗A, A∈A ,σ ∈G . P P 3. HOLONOMY AND PARALLELTRANSPORT Let me considera curveγ on M; by the word “curve”, I mean in this context(if not otherwisestated)apiecewisesmoothmapfromtheunitintervalItoM. Definition3.1. Givenaconnection1-formAonP,ahorizontalliftofγbasedatp∈P is acurveonP,lyingoverγ,basedatthepointpandsuchthatallitstangentdirectionsare (A-)horizontal. 6 C.A.ROSSI Iquotewithoutprooffrom[7],Chapter2,Section3,thefollowingTheorem,whichis themainingredientofmanyofthesubsequentconstructions: Theorem3.2. Givenaconnection1-formAonP andacurveγ inM,thereisaunique horizontalliftofγbasedatthepointp,whichIdenotebyγ . A,p Now,itispossibletodisplaytwoimportantconsequencesofTheorem3.2. e 3.1. Holonomy: definitionandmainproperties. Iconsideraloopγ,i.e.acurveinM satisfying γ(0) = γ(1); I choose additionally a point p ∈ P lying over γ(0) = γ(1). GivenaconnectionA,byTheorem3.2,thereisauniquehorizontalliftγ ofγbasedat A,p p. Sinceγ isaliftofγ,γ (1)alsoliesoverγ(0),and,asGactstransitivelyoneach A,p A,p fibreofP,itmakessensetoproposethefollowing e Definitioen3.3. Theholonoemyofγ w.r.t. theconnectionAandbasepointp overγ(0)is theuniqueelementofG,usuallydenotedbyH(A;γ;p),satisfying (3.1) γ (1)=pH(A;γ;p), A,p whereγ istheuniquehorizontalliftbasedatp∈P overγ(0),oftheloopγ. A,p e The structuregroupG and the gaugegroupG operate fromthe righton P, resp. on P the spaece of connectionsA. The holonomydependsby its very constructionon a given loopγ,aconnectionAonP andabasepointp∈P ;hence,itmakessensetoconsider γ(0) itasafunctiononthecartesianproductofthespaceofconnectionsAonP,thespaceof loopswithvaluesinthestructuregroupGandthebundleP itself;later,wewillseethatit ismorepreciselyasectionofsomeprincipalbundleoverit. ThenextLemmashowshowtheholonomybehavesw.r.t.theactionofG,resp.ofG,on P,resp.A. Lemma 3.4. I assume g, resp. σ, to be an element of G, resp. a gauge transformation; I denoteby g the functionfrom P with valuesin G canonicallyassociatedto σ via the σ formula σ(p)=pg (p). σ (ThisformulamakessensebythetransitivityoftheactionofGonanyfibreofP.) Then,thefollowingformulaehold: (3.2) H(A;γ;pg)=c g−1 H(A;γ;p); (3.3) H(Aσ;γ;p)=c(cid:0)gσ(p(cid:1))−1 H(A;γ;p). Proof. ByDefinition3.3,theidentityhold(cid:0)s (cid:1) γ (1)=pg H(A;γ;pg), A,pg whereγ istheuniquehorizontalliftofγbasedatpggivenbyTheorem3.2. Iconsider A,pg thecurveR (γ ): itisclearleybasedatpg,and(2.1)impliesthat g A,p e d d A R (γ (t)) =A T R γ (t) = Rg(γA,p(et)) dt g A,p Rg(γA,p(t)) γA,p(t) g dt A,p (cid:18) (cid:19) (cid:20) (cid:18) (cid:19)(cid:21) e e e d e =Ad g−1 A γ (et) =0. γA,p(t) dt A,p (cid:20) (cid:18) (cid:19)(cid:21) (cid:0) (cid:1) Hence,thecurveR (γ )isalsohorizontal,itliesoveerγ (bytheG-invarianceofπ)and g A,p e isbasedatpg.BytheuniquenessinTheorem3.2,itfollowsR (γ )=γ ,whence g A,p A,pg e γ (1)=γ (1)g =p H(A;γ;p)g. A,pg A,p e e e e HOLONOMYANDPARALLELTRANSPORT... 7 Finally,thefreenessoftheactionofGimplies(3.2). Similarly,againbyDefinition3.3,itholds γ (1)=p H(Aσ;γ;p). Aσ,p Iclaimnow e (3.4) σ(γ )=γ . Aσ,p A,σ(p) Both curves σ(γAσ,p) and γA,σ(p) lie over γ, as σ is a gauge transformation, and both e e areclearlybasedatσ(p). Toproveequation(3.4),itsufficestoshowthatbothcurvesare A-horizontalbyuniquenessofhorizontallifts. Adirectcomputationshows: e e d d Aσ(γAσ,p(t)) dtσ(γAσ,p(t)) =(Aσ)γAσ,p(t) dtγAσ,p(t) = (cid:18) (cid:19) (cid:18) (cid:19) =0, e e e e wherethelastidentityisaconsequenceoftheAσ-horizontalityofγ . Hence,Identity Aσ,p (3.4)holdstrue.Therefore,onegets e σ(p) H(Aσ;γ;p)By=(3.4)σ(p) H(A;γ;σ(p)) SincetheactionofGisfree,itfollows H(Aσ;γ;p)=H(A;γ;σ(p))=H(A;γ;pg (p))By=(3.2) σ =c g (p)−1 H(A;γ;p). σ (cid:0) (cid:1) (cid:3) 3.2. Paralleltransport: definitionandmainproperties. ThenextobjectIwanttode- fineistheparalleltransportw.r.t.aconnectionAalongageneralcurveγ. Definition3.5. Letγ bea curveinM, notnecessarilyclosed, andlett ∈ I andp ∈ P, resp.q ∈P,besuchthat π(p)=γ(0), resp. π(q)=γ(t). Idefinetheparalleltransportfromptoq alongγ from0totw.r.t.A,usuallydenotedby H(A;γ;t;p,q),astheuniqueelementofGobeyingtherule (3.5) γ (t)=q H(A;γ;t;p,q), A,p whereγ isthehorizontalliftofγ. A,p e Theparalleltransportdefinedbyequation(3.5)satisfiestwoidentitiessimilarinspirit e to(3.2)and(3.3). Lemma3.6. GivenaconnectionAonP,acurveγ inM,p ∈ P andq ∈ P , for γ(0) γ(t) some t in the unit interval, general elements h and k of G and a gauge transformation σ ∈G,theparalleltransportofγfromptoqalongγfrom0totsatisfiesthetwofollowing identities: (3.6) H(A;γ;t;pg,qh)=h−1H(A;γ;t;p,q)g; (3.7) H(Aσ;γ;t;p,q)=g (q)−1H(A;γ;t;p,q)g (p). σ σ 8 C.A.ROSSI Proof. ByDefinition3.5,onehas γ (t)=qh H(A;γ;t;p,qh)=q H(A;γ;t;p,q). A,p BythefreenessoftheactionofGonP,onegets e (3.8) H(A;γ;t;p,qh)=h−1H(A;γ;t;p,q), ∀h∈G. Ontheotherhand,theidentityholds γ (t)=q H(A;γ;t;pg,q)= A,pg =γ (t)g = A,p e =q H(A;γ;t;p,q)g, e wherethesecondidentitywasshownintheproofofLemma3.4. Itfollowstherefore (3.9) H(A;γ;t;pg,q)=H(A;γ;t;p,q)g, ∀g ∈G. Combining(3.8)and(3.9),onegets(3.6). Asforthesecondidentity,Imakeuseagainof(3.4):itthenholds γ (t)=σ(q)H(A;γ;t;σ(p),σ(q))= A,σ(p) =σ(γAσ,p(t))= e =σ(qH(Aσ;γ;t;p,q))= e =σ(q)H(A;γ;t;σ(p),σ(q)). ThefreenessoftheactionofGimpliesthen H(Aσ;γ;t;p,q)=H(A;γ;t;σ(p),σ(q))= =H A;γ;t;pg ,qg (q) = σ(p) σ =gσ(cid:0)(q)−1H(A;γ;t;p,q)gσ(cid:1)(p), wherethelastidentityisaconsequenceof(3.6). (cid:3) Afterhavingintroducedtheparalleltransportofacurveγ from0to apointt w.r.t.A andhavingdiscussedsomeofitsproperties,Imayalsointroduceanotherobject,namely theparalleltransportofthecurveγfromstot,wheres,t∈Isatisfys<t. Firstofall,givenacurveγfromtheunitintervalItoM,andgivens∈I,letmedefine anewcurveγ fromtheinterval[0,1−s]bytheassignment s γ(t): =γ(t+s), ∀t∈[0,1−s]. s Definition3.7. Letγ be acurveinM, definedon theunitintervalI; letthens < ttwo pointsinI,andpandqtwopointsinP satisfying π(p)=γ(s), π(q)=γ(t). The parallel transport of γ from p to q w.r.t. the connection A, which I denote by H(A;γ;s,t;p,q),istheuniqueelementofGobeyingtherule (3.10) γ (t−s)=qH(A;γ;s,t;p,q). sA,p RecallingEquation(3.5),Equation(3.10)isequivalentto e (3.11) H(A;γ;s,t;p,q)=H(A;γ ;t−s;p,q). s Lemma3.6togetherwithEquation(3.11)impliestheuseful HOLONOMYANDPARALLELTRANSPORT... 9 Corollary3.8. GivenaconnectionAonP,acurveγ inM,twopointss,t ∈ Iobeying s<t,p∈P andq ∈P ,generalelementshandkofGandagaugetransformation γ(s) γ(t) σ ∈ G, the paralleltransportofγ from p to q alongγ from s to t satisfiesthe following identities: H(A;γ;s,t;pg,qh)=h−1H(A;γ;s,t;p,q)g; H(Aσ;γ;s,t;p,q)=g (q)−1H(A;γ;s,t;p,q)g (p). σ σ 4. ISOMORPHISMS OF PRINCIPAL BUNDLES AND GENERALIZEDGAUGE TRANSFORMATIONS π π LetP → M,P → M twoprincipalbundlesoverthesamemanifoldM andwiththe samestructuregroupeG; therightactionofGonP,resp.P, isdenotedbyR•, resp.R•, orsimplyby(p,ge)7→pg,resp.(p,g)7→pg,giventhecase. e e Definition4.1. GiventwoprincipalbundlesP,P asabove,aG-equivariantmapσ from e e P toP isasmoothmapfromP toP satisfyingthetwoproperties: e π◦σ =π, (4.1) e e σ◦R =R ◦σ, ∀g ∈G. g g e ThesetofallsuchmapsisdenotedbyG . P,P e Remark4.2. ThesetG ,foragivenprincipalbundleP,isthesetofgaugetransforma- P,P e tionsofP. GiventwoprincipalbundlesP,P overM asabove,itispossibletoformoutofthema manifoldasfollows: e Definition4.3. GiventwoprincipalG-bundlesP andP overthesamebasespaceM,their fibredproduct,denotedusuallybyP ⊙P,isdefinedas e P ⊙P: = (p,p)∈P ×P: π(p)=π(p) . e n o ThereisanaturalmapπefromthefiberedproduectP ⊙P toeMe,whichissimply π(p,p): =π(p)=π(p), (p,p)∈P ⊙P. e Additionally,P ⊙P receivesarightG×G-action: e e e e e (p,p;(g,h))7→(pg,ph), ∀(p,p)∈P ⊙P,(g,h)∈G×G. e Itisclearthattheaboveactionisfree,asbothactionsofGonP andP arefree;moreover, consideringthefiebre e e e P ⊙P : =π−1({x}), e x itfollowsimmediatelythatthe(cid:16)actionof(cid:17)G×Gistransitiveonit. e Thesetwofactsarenotincidental,becauseofthefollowing Proposition4.4. The fibred product P ⊙P is a principal G×G-bundle over M, with projectionπ. e Proof. If U is an open set of M, let me denote by ϕ , resp. ϕ , the trivialization of P U U overU,resp.ofP overU. Atrivializationϕ ofP ⊙P overU maythusbedefinedvia U ϕ: π−1(U)−→U ×(G×G) e e e (p,p)7−→(π(p);(pr ◦ϕ )(p),(pr ◦ϕ )(p)). 2 U 2 U e e e 10 C.A.ROSSI where pr denotes the projection from U ×G onto G. These maps are invertible, their 2 inversesbeinggivenby ϕ−1: U ×(G×G)−→π−1(U) U (x;g,h)7−→ ϕ−1(x,g),ϕ−1(x,h) . U U Itisclearfromtheirdefinitionthatthemaps(cid:0)ϕ andtheirinversesa(cid:1)resmooth. Hence,I U e haveobtainedatrivializationofthefibredproductP ⊙P. For the sake of completeness, let me write down explicitly the transition maps of the G×G-principalbundleP ⊙P: e ϕ : U ∩V −→Diff(G×G) U,V e x7−→R ×R , ϕU,V(x) ϕU,V(x) whereϕU,V,resp.ϕU,V,arethetransitionmapsofP,reespe.P w.r.t.thetrivializationsϕU, ϕ ,resp.ϕ ,ϕ ,forU,V anytwoopensubsetsofM withnontrivialintersection. (cid:3) V U V e e Remark4.5. LetmenoticethatthefibredproductmaybealsoseenasaprincipalG-bundle e e overP:infact,byitsverydefinition, P ⊙P =π∗(P), and the latter manifold inherits clearly a principal G-bundle structure over P. (Equiva- e e lently,thefibredproductmaybealsoviewedasaG-bundleoverP,asP ⊙P =π∗(P).) Remark 4.6. The fibred product of two principal bundles over the same base space and e e e with thesame structuregroupmaybeseen asananalogueoftheWhitneysumof vector bundlesforprincipalbundles. Furthermore,itisclearthatthereisacanonicalisomorphism P ⊙P ∼=P ⊙P, foranytwoprincipalbundlesP,P overthesamebasespaceM. e e Now,thereisaleftactionofG×GonGspecifiedbytherule: e c: G×G−→Diff(G) (g,h)7−→c(g,h)k: =hkg−1. ItisquiteevidentthattherestrictionofctothediagonalsubgroupGofG×Ggivesthe usual conjugation of G on itself; therefore, one can speak of the above action as of the generalizedconjugationinG. Definition4.7. UnderthesamehypothesesasinDefinition4.3,thesetofsmoothG×G- G×G equivariant maps from P ⊙ P to G, denoted by C∞ P ⊙P,G , is the subset of C∞ P ⊙P,G ofthosemapsK satisfyingtheequiva(cid:16)riancew.r.t(cid:17).thegeneralizedconju- e e gati(cid:16)on (cid:17) e (4.2) K(pg,ph)=c g−1,h−1 K(p,p), ∀(p,p)∈P ⊙P,(g,h)∈G×G. ToagivenprincipalG(cid:0)-bundleP(cid:1)overM,onecanassociate thecanonicalmapφ on e e e e P P ⊙P withvaluesinGbytherule (4.3) q =pφ (p,q), P

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.