Table Of ContentHOLONOMY AND PARALLEL TRANSPORT IN THE DIFFERENTIAL
GEOMETRY OF THE SPACE OF LOOPS AND THE GROUPOID OF
4
0 GENERALIZED GAUGE TRANSFORMATIONS
0
2
CARLOA.ROSSI
n
a
J
ABSTRACT. Themotivationforthispaperstems[4]fromtheneedtoconstructexplicit
5 isomorphismsof(possiblynontrivial)principalG-bundlesonthespaceofloopsor,more
1 generally, ofpathsinsomemanifoldM,overwhichIconsiderafixedprincipalbundle
P;theaforementionedbundlesarethenpull-backsofP w.r.t.evaluationmapsatdifferent
] points.
G
Theexplicitconstructionoftheseisomorphismsbetweenpulled-backbundlesrelieson
D thenotionofparalleltransport.Iintroduceanddiscussextensivelyatthispointthenotion
ofgeneralizedgaugetransformationbetween(apriori)distinctprincipalG-bundlesover
.
h thesamebaseM; onecanseeimmediately thattheparalleltransportcanbeviewedas
t ageneralizedgaugetransformationfortwospecialkindofbundlesonthespaceofloops
a
orpaths;atthispoint,itispossibletogeneralizethepreviousargumentsformoregeneral
m
pulled-backbundles.
[ Finally,Idiscusshowflatnessofthereferenceconnection,w.r.t.whichIconsiderholo-
nomyandparalleltransport,isrelatedtohorizontalityoftheassociatedgeneralizedgauge
1
transformation.
v
0
8
1
1
CONTENTS
0
4 1. Introduction 2
0
2. Backgrounddefinitions 3
/
h 2.1. Thebridgebetweenconnection1-formsandhorizontalbundle 4
t 3. Holonomyandparalleltransport 5
a
m 3.1. Holonomy:definitionandmainproperties 6
3.2. Paralleltransport:definitionandmainproperties 7
:
v 4. Isomorphismsofprincipalbundlesandgeneralizedgaugetransformations 9
i
X 4.1. Thegroupoidofgeneralizedgaugetransformations 14
5. Somegeneralconstructionsforgroupoids 18
r
a 5.1. TheproductgroupoidoftwogroupoidsG,H 19
5.2. Morphismsofgroupoids 19
5.3. Theoppositegroupoid 20
5.4. Left-andrightG actionsforthegroupoidG 20
5.5. ThegeneralizedconjugationofG 21
5.6. Equivariantmapsbetweengroupoid-spaces 22
5.7. Someexplicitcomputationsforthegroupoidofgeneralizedgaugetransformations 23
6. Applicationstobundlesonthespaceofloopsorpaths 23
6.1. RestrictiontotheboundaryofI 27
7. Someconsequencesofflatnessrelatedtoholonomyandparalleltransport 28
7.1. Connectionsonthefibredproductoftwoprincipalbundles 29
C.A.RossiacknowledgespartialsupportofAlyKaufmanFellowship.
1
2 C.A.ROSSI
7.2. Compositionpropertiesandinversionoftheparalleltransport 30
7.3. Holonomyandflatness 32
7.4. Flatnessandparalleltransport 37
8. Applicationsofthegeneralizedgaugetransformationassociatedtotheparalleltransport:iteratedChenintegrals 41
8.1. Paralleltransportandsimplices 42
8.2. Flatnessandparalleltransportonsimplices 43
8.3. IteratedChen-typeintegrals 44
8.4. Restrictionstoboundaryfacesofsimplices 48
8.5. ThegeneralizedholonomyandChen’siteratedintegrals 48
AppendixA. Theorientationofthenthsimplex△ 54
n
References 55
1. INTRODUCTION
Inthelastsectionof[4],wheretheTopologicalQuantumFieldtheoreticalbackground
behindthe higher-ordercohomologygroupsof the space of knotsin Rm, for m ≥ 3, of
Cattaneo–Cotta-Ramusino–Longoni[2]wasexplicitlyconstructed,somehintsweremen-
tioned towards possible generalizations of the computationsin [4], dealing with iterated
Chen-typeintegrals,toanontrivialprincipalG-bundleP;infact,themainobjectthrough-
outthe paper was the so-called generalizedholonomy, viewed as an iterated integral, on
somefixedprincipalG-bundleP,whichweassumedtobetrivialinordertosimplifythe
computations.
Inthelastsection, weaddressedinformallytheproblemofdefiningiteratedintegrals,
asourexpressionfortheparalleltransport,foranontrivialbundleP. Thesameproblem
arisesalsoinSection2of[3]: theauthorsdiscussthenotionofiteratedChenintegralsin
relationshipwithso-called“specialconnections”onthespaceofhorizontalpathsina(not
necessarilytrivial)principalbundleovera4-manifoldM,namelytheyneediteratedChen
integralsof formsof the adjointtype on M in order to computethe curvatureof special
connections. AnexplicitformulaisdisplayedtherefortheChenbracket;still, astheau-
thorsthemselvespointedout,itiswithoutdetails,towhichtheyplannedtodedicatesome
furtherpaper.Oneofthemainsubtletiesofthetaskin[3]and[4]liestherein,thatweneed
to identifypulled-backbundlesof P on the spaceof loops(or, moregenerally,of paths)
in a generalmanifoldM w.r.t. evaluationmaps at differentpoints. We sketched without
detailsthereinsomeargumentsleadingtotheanswer;inparticular,wepointedouttheim-
portanceinthistaskoftheholonomyand,moregenerally,oftheparalleltransport.Infact,
theparalleltransport,whichdependsexplicitlybyitsveryconstructiononaconnectionA
onP,definesanisomorphismbetweentwoparticulartypeofpulled-backbundlesonthe
spaceofloopsorpathsinM.
Inthepresentpaper,Iexplainalldetailsofthisconstruction,performingthecomplete
computationswehintedatinthelastsectionof[4]. Thepaperisorganisedasfollows: in
Section2, Irecallthemainnotions,namelyconnectionsonprincipalG-bundlesoverthe
manifoldM,andIdiscussthetwoequivalentwaysofdefiningaconnection,sinceIwill
makeuseofthembothinthesubsequentcomputations.
In Section 3, I recall the notions of holonomy w.r.t. a chosen connection A of a loop
γ in M and parallel transport w.r.t. A of a path γ; I then state and prove two technical
lemmatacontaininginformationaboutsomesortofequivariancedisplayedbyholonomy
andparalleltransportw.r.t.theactionsofthestructuregroupGofP andthegaugegroup
HOLONOMYANDPARALLELTRANSPORT... 3
G of P. The contentsof the first two sections are standardfacts in gaugetheory; I will
P
nonethelessreviewtheminsomedetailtofixconventionsandnotations.
InSection4,IdiscussthenotionofisomorphismsofG-principalbundles(aprioridis-
tinct) over M.It is well known that fibre-preserving, G-equivariant automorphisms of a
fixed G-principalbundles are in one-to-onecorrespondenceto maps from P to G, equi-
variantw.r.t.conjugationonG;similarly,fibre-preserving,G-equivariant(iso)morphisms
between (a priori distinct) principal G-bundles over the same base space M are in one-
to-onecorrespondencetowhatIcallgeneralizedgaugetransformations. Thesearemaps
fromthefibredproductoftheaforementionedbundles(aconceptsomehowmimickingthe
notion of Whitney sum of vector bundles) with values in G, equivariant w.r.t. an action
of the product group G×G on G, which, when restricted to the diagonal subgroup G,
restrictstotheconjugationonG. Thekeyelementoftheabovecorrespondenceliesinthe
canonicalmapfromthefibredproductofabundleP withitselfassociatedtotheidentity
mapofP;Ialsodiscussitsproperties. Ithenproceedwiththediscussionofthestructure
ofthe setofgeneralizedgaugetransformations;itturnsouttobe (obviously)a groupoid
over the category of principal G-bundles over M; this notion generalizes that of gauge
group,andIthereforespeakofthe groupoidofgeneralizedgaugetransformationsofM
andG.
InSection5, I partlyreview,partlyexplainsome generalconstructionsforgroupoids;
inparticular,IrecalltheconceptofactionsofgroupoidsonsetsandconstructwhatIcall
thegeneralizedconjugationforgroupoids,whichisanactionoftheproductofagroupoid
with itself on the groupoiditself, which mimicssomehowthe conjugationof a groupon
itself, a notionwhichno longermakessense fora groupoid. I also discuss the notionof
equivariantmorphismsfrom(leftorright)groupoidactionstoother(leftorright)groupoid
actions.
InSection6,Iinterpretholonomyandparalleltransportasgeneralizedgaugetransfor-
mationsforaparticulartypeofpulled-backbundlesoverthespaceofloopsorpathsinM
of a fixed principalbundleP over M w.r.t. evaluationmaps. Thus, there is a map asso-
ciating to a connection on P a generalized gauge transformation; interpreting the gauge
groupofP asagroupoid,hencethespaceofconnectionsonP asaG -space,thetechni-
P
callemmataofSection3maybeinterpretedinthesensethatthereisanequivariantmap
of groupoidactions from the space of connectionsto the groupoidof generalized gauge
transformations.
In Section 7, I discuss the important consequences of the restriction of the map dis-
cussed in Section 6 between the space of connections and the groupoid of generalized
gauge transformationsto the space of flat connections. Namely, the flatness (which has
a non-abelian cohomologicalinterpretation) implies in a highly nontrivial way the hori-
zontality of a the corresponding generalized gauge transformation; the key step for this
achieving this result lies in the well-known fact that flat connections induce representa-
tionsofthehomotopygroupofM.
Acknowledgment. I thank A. S. Cattaneo and G. Felder for many inspiring suggestions,
mainlyonthesubjectofgroupoidsandforconstantsupport;Ialsoacknowledgethepleas-
antatmosphereat the Departmentof Mathematicsof the Technion,where thiswork was
accomplished.
2. BACKGROUND DEFINITIONS
Inthissection, I introducethe mainnotionsandnotationsI use throughoutthepaper;
amongthem,Iwanttodiscussindetailthenotionofconnectiononprincipalbundles.Let
4 C.A.ROSSI
π
menoticethatIworkonageneralprincipalbundleP 7→M overarealmanifoldM (ifnot
otherwise stated, M is assumed to be connectedand paracompact);I do notassume any
particularpropertyonthestructuregroupG. BygIdenotethecorrespondingLiealgebra.
Definition2.1. A connection1-formontheprincipalbundleP isa 1-formAonP with
valuesing,satisfyingthetwofollowingrequirements:
i) (Equivariance)
(2.1) R∗A=Ad(g−1)A,
g
wherebyR Ihavedenotedthe(free)rightactionofGonP.
g
ii) (Verticality)Foranyξ ∈g,
(2.2) A (T L(ξ))=ξ, ∀p∈P;
p e p
here,IhavedenotedbyR thefibreinjectionG→P givenbyg 7→pg.
p
Forourpurposes,itisbettertointroduceaslightlydifferentcharacterisationofconnec-
tions;later,Iwilldiscusstherelationshipbetweenthem.
Firstofall,atangentvectorX toP atthepointpissaidtobevertical,ifitsatisfiesthe
equation
T π(X)=0.
p
TheverticalspaceV P, consistingofallverticaltangentvectorsatp, foranyp ∈ P, is
p
isomorphictotheLie-algebragvia
ξ 7→T L (ξ), ξ ∈g.
e p
It turns out that the vertical spaces V P can be glued together to give a smooth vector
p
bundle, the so-called vertical bundle VP (whose typical fibre is isomorphic to the Lie
algebrag);itisclearlyasubbundleofTP.
Alas,thereisinprinciplenocanonicalwaytodefineacomplementofVP w.r.t.Whit-
neysum,i.e.thereisnocanonicalbundleHP suchthatVP ⊕HP =TP. Itturnsoutthat
thechoiceofsuchacomplementarybundlereliesonthechoiceofaconnection1-formA
onP,asitismotivatedbythefollowingdefinition:
Definition2.2. Givenaconnection1-formAonP,atangentvectorX toP atpissaid
p
tobeA-horizontalifthefollowingequationholds:
A (X )=0.
p p
(Forthesakeofbrevity,whentheconnection1-formAisclearfromthecontext,Isimply
speakofhorizontalvectors.)
2.1. Thebridgebetweenconnection1-formsandhorizontalbundle. Idiscuss,forthe
sakeofcompleteness,howaconnection1-formAonP givesrisetoasmoothassignment
toanyp∈P ofasubspaceH P ⊂T P,suchthatthefollowingtworequirementshold:
p p
i) T P =V P ⊕H P;
p p p
ii) H P =T R (H P),foranyg ∈G,
pg p g p
andviceversa. Infact,thetworequirementslistedabovearealsoanalternativedefinition
of connectionas a way of splitting the tangentbundle of P into the Whitney sum of the
verticalbundle,whichisclearlyG-invariantasaconsequenceoftheidentity
R ◦L =L ◦c g−1 , ∀p∈P,g ∈G,
g p pg
andsomehorizontalbundle. (cid:0) (cid:1)
HOLONOMYANDPARALLELTRANSPORT... 5
Given such an assignment, it is possible to define a correspondingconnection1-form
via
(2.3) A (X ): =ξ ,
p p Xp
where ξ is the uniqueelementof g which correspondsto the verticalpartof X w.r.t.
Xp p
theabovesplitting,i.e.
T L ξ =Xv,
e p Xp p
whereXv istheverticalpartofX w.r.t.theabovesplitting. Itfollowsimmediatelythat
p p (cid:0) (cid:1)
thehorizontalspaceatp ∈ P isexactlythe kernelofA . Theverydefinitionofvertical
p
space and Equation (2.3) imply together that A satisfies (2.2). The invariance given by
Conditionii)aboveensuresthatbothprojectionsintoverticalandhorizontalsubspaceare
G-invariant,whichinturnleadsto(2.1).
On the other hand, given a connection1-formA on P, the correspondingsplitting of
TP atsomepointp∈P isgivenby
X = X −XA +XA, XA: =T L (A (X )), p∈P.
p p p p p e p p p
Infact,by(2.2),iti(cid:0)seasytopr(cid:1)ovethatthelinearoperatorTeLp◦Apistheprojectiononto
theverticalsubspace;itskernelisthereforethehorizontalsubspacecorrespondingtothe
choiceofA. Condition(2.1),inturn,alongsidetheidentity
L ◦c g−1 =R ◦L , ∀p∈P,g ∈G,
pg g p
ensures that the correspondin(cid:0)g dis(cid:1)tribution is G-equivariant (c denotes the conjugation
on G). Finally, let me spend some words on the concept of gauge transformation of a
principalG-bundleP overM. AgaugetransformationσofP isa(smooth)mapfromP
toP,enjoyingthefollowingtwoproperties:
π◦σ =π, σ(pg)=σ(p)g, ∀p∈P,g ∈G.
ThefirstconditionmeansthatanygaugetransformationrespectsthefibresofP;thesecond
onemeansthatσisequivariantw.r.t.the(right)G-actiononP.Later,wewillseethatthere
isanotherwayofdefininggaugetransformationsofabundleP, but, forthemoment,let
meskiptheproblem.
AnotherproblemIwilladdressto lateristhat, infact, anygaugetransformationisan
isomorphism;theproofofthisfactiseasy,butIprefertopostponeittoSection4,deserving
itatreatmentinamoregeneralcontext.
Let me notice that this last fact that means that the set of gauge transformationsis a
groupw.r.t.theproductoperationgivenbycomposition;hence,itmakessensetospeakof
thegaugegroupofaprincipalbundleP,whichIdenotebyG .
P
Finally,thegaugegroupG operatesonthespaceofconnectionsonP,whichIdenote
P
byA = A ,tomakemanifestthedependenceonthechosenbundleP;the(right)action
P
isgivenexplicitlyby
Aσ: =σ∗A, A∈A ,σ ∈G .
P P
3. HOLONOMY AND PARALLELTRANSPORT
Let me considera curveγ on M; by the word “curve”, I mean in this context(if not
otherwisestated)apiecewisesmoothmapfromtheunitintervalItoM.
Definition3.1. Givenaconnection1-formAonP,ahorizontalliftofγbasedatp∈P is
acurveonP,lyingoverγ,basedatthepointpandsuchthatallitstangentdirectionsare
(A-)horizontal.
6 C.A.ROSSI
Iquotewithoutprooffrom[7],Chapter2,Section3,thefollowingTheorem,whichis
themainingredientofmanyofthesubsequentconstructions:
Theorem3.2. Givenaconnection1-formAonP andacurveγ inM,thereisaunique
horizontalliftofγbasedatthepointp,whichIdenotebyγ .
A,p
Now,itispossibletodisplaytwoimportantconsequencesofTheorem3.2.
e
3.1. Holonomy: definitionandmainproperties. Iconsideraloopγ,i.e.acurveinM
satisfying γ(0) = γ(1); I choose additionally a point p ∈ P lying over γ(0) = γ(1).
GivenaconnectionA,byTheorem3.2,thereisauniquehorizontalliftγ ofγbasedat
A,p
p. Sinceγ isaliftofγ,γ (1)alsoliesoverγ(0),and,asGactstransitivelyoneach
A,p A,p
fibreofP,itmakessensetoproposethefollowing
e
Definitioen3.3. Theholonoemyofγ w.r.t. theconnectionAandbasepointp overγ(0)is
theuniqueelementofG,usuallydenotedbyH(A;γ;p),satisfying
(3.1) γ (1)=pH(A;γ;p),
A,p
whereγ istheuniquehorizontalliftbasedatp∈P overγ(0),oftheloopγ.
A,p
e
The structuregroupG and the gaugegroupG operate fromthe righton P, resp. on
P
the spaece of connectionsA. The holonomydependsby its very constructionon a given
loopγ,aconnectionAonP andabasepointp∈P ;hence,itmakessensetoconsider
γ(0)
itasafunctiononthecartesianproductofthespaceofconnectionsAonP,thespaceof
loopswithvaluesinthestructuregroupGandthebundleP itself;later,wewillseethatit
ismorepreciselyasectionofsomeprincipalbundleoverit.
ThenextLemmashowshowtheholonomybehavesw.r.t.theactionofG,resp.ofG,on
P,resp.A.
Lemma 3.4. I assume g, resp. σ, to be an element of G, resp. a gauge transformation;
I denoteby g the functionfrom P with valuesin G canonicallyassociatedto σ via the
σ
formula
σ(p)=pg (p).
σ
(ThisformulamakessensebythetransitivityoftheactionofGonanyfibreofP.)
Then,thefollowingformulaehold:
(3.2) H(A;γ;pg)=c g−1 H(A;γ;p);
(3.3) H(Aσ;γ;p)=c(cid:0)gσ(p(cid:1))−1 H(A;γ;p).
Proof. ByDefinition3.3,theidentityhold(cid:0)s (cid:1)
γ (1)=pg H(A;γ;pg),
A,pg
whereγ istheuniquehorizontalliftofγbasedatpggivenbyTheorem3.2. Iconsider
A,pg
thecurveR (γ ): itisclearleybasedatpg,and(2.1)impliesthat
g A,p
e d d
A R (γ (t)) =A T R γ (t) =
Rg(γA,p(et)) dt g A,p Rg(γA,p(t)) γA,p(t) g dt A,p
(cid:18) (cid:19) (cid:20) (cid:18) (cid:19)(cid:21)
e e e d
e =Ad g−1 A γ (et) =0.
γA,p(t) dt A,p
(cid:20) (cid:18) (cid:19)(cid:21)
(cid:0) (cid:1)
Hence,thecurveR (γ )isalsohorizontal,itliesoveerγ (bytheG-invarianceofπ)and
g A,p e
isbasedatpg.BytheuniquenessinTheorem3.2,itfollowsR (γ )=γ ,whence
g A,p A,pg
e γ (1)=γ (1)g =p H(A;γ;p)g.
A,pg A,p
e e
e e
HOLONOMYANDPARALLELTRANSPORT... 7
Finally,thefreenessoftheactionofGimplies(3.2).
Similarly,againbyDefinition3.3,itholds
γ (1)=p H(Aσ;γ;p).
Aσ,p
Iclaimnow
e
(3.4) σ(γ )=γ .
Aσ,p A,σ(p)
Both curves σ(γAσ,p) and γA,σ(p) lie over γ, as σ is a gauge transformation, and both
e e
areclearlybasedatσ(p). Toproveequation(3.4),itsufficestoshowthatbothcurvesare
A-horizontalbyuniquenessofhorizontallifts. Adirectcomputationshows:
e e
d d
Aσ(γAσ,p(t)) dtσ(γAσ,p(t)) =(Aσ)γAσ,p(t) dtγAσ,p(t) =
(cid:18) (cid:19) (cid:18) (cid:19)
=0,
e e e e
wherethelastidentityisaconsequenceoftheAσ-horizontalityofγ . Hence,Identity
Aσ,p
(3.4)holdstrue.Therefore,onegets
e
σ(p) H(Aσ;γ;p)By=(3.4)σ(p) H(A;γ;σ(p))
SincetheactionofGisfree,itfollows
H(Aσ;γ;p)=H(A;γ;σ(p))=H(A;γ;pg (p))By=(3.2)
σ
=c g (p)−1 H(A;γ;p).
σ
(cid:0) (cid:1) (cid:3)
3.2. Paralleltransport: definitionandmainproperties. ThenextobjectIwanttode-
fineistheparalleltransportw.r.t.aconnectionAalongageneralcurveγ.
Definition3.5. Letγ bea curveinM, notnecessarilyclosed, andlett ∈ I andp ∈ P,
resp.q ∈P,besuchthat
π(p)=γ(0), resp. π(q)=γ(t).
Idefinetheparalleltransportfromptoq alongγ from0totw.r.t.A,usuallydenotedby
H(A;γ;t;p,q),astheuniqueelementofGobeyingtherule
(3.5) γ (t)=q H(A;γ;t;p,q),
A,p
whereγ isthehorizontalliftofγ.
A,p
e
Theparalleltransportdefinedbyequation(3.5)satisfiestwoidentitiessimilarinspirit
e
to(3.2)and(3.3).
Lemma3.6. GivenaconnectionAonP,acurveγ inM,p ∈ P andq ∈ P , for
γ(0) γ(t)
some t in the unit interval, general elements h and k of G and a gauge transformation
σ ∈G,theparalleltransportofγfromptoqalongγfrom0totsatisfiesthetwofollowing
identities:
(3.6) H(A;γ;t;pg,qh)=h−1H(A;γ;t;p,q)g;
(3.7) H(Aσ;γ;t;p,q)=g (q)−1H(A;γ;t;p,q)g (p).
σ σ
8 C.A.ROSSI
Proof. ByDefinition3.5,onehas
γ (t)=qh H(A;γ;t;p,qh)=q H(A;γ;t;p,q).
A,p
BythefreenessoftheactionofGonP,onegets
e
(3.8) H(A;γ;t;p,qh)=h−1H(A;γ;t;p,q), ∀h∈G.
Ontheotherhand,theidentityholds
γ (t)=q H(A;γ;t;pg,q)=
A,pg
=γ (t)g =
A,p
e
=q H(A;γ;t;p,q)g,
e
wherethesecondidentitywasshownintheproofofLemma3.4. Itfollowstherefore
(3.9) H(A;γ;t;pg,q)=H(A;γ;t;p,q)g, ∀g ∈G.
Combining(3.8)and(3.9),onegets(3.6).
Asforthesecondidentity,Imakeuseagainof(3.4):itthenholds
γ (t)=σ(q)H(A;γ;t;σ(p),σ(q))=
A,σ(p)
=σ(γAσ,p(t))=
e =σ(qH(Aσ;γ;t;p,q))=
e
=σ(q)H(A;γ;t;σ(p),σ(q)).
ThefreenessoftheactionofGimpliesthen
H(Aσ;γ;t;p,q)=H(A;γ;t;σ(p),σ(q))=
=H A;γ;t;pg ,qg (q) =
σ(p) σ
=gσ(cid:0)(q)−1H(A;γ;t;p,q)gσ(cid:1)(p),
wherethelastidentityisaconsequenceof(3.6). (cid:3)
Afterhavingintroducedtheparalleltransportofacurveγ from0to apointt w.r.t.A
andhavingdiscussedsomeofitsproperties,Imayalsointroduceanotherobject,namely
theparalleltransportofthecurveγfromstot,wheres,t∈Isatisfys<t.
Firstofall,givenacurveγfromtheunitintervalItoM,andgivens∈I,letmedefine
anewcurveγ fromtheinterval[0,1−s]bytheassignment
s
γ(t): =γ(t+s), ∀t∈[0,1−s].
s
Definition3.7. Letγ be acurveinM, definedon theunitintervalI; letthens < ttwo
pointsinI,andpandqtwopointsinP satisfying
π(p)=γ(s), π(q)=γ(t).
The parallel transport of γ from p to q w.r.t. the connection A, which I denote by
H(A;γ;s,t;p,q),istheuniqueelementofGobeyingtherule
(3.10) γ (t−s)=qH(A;γ;s,t;p,q).
sA,p
RecallingEquation(3.5),Equation(3.10)isequivalentto
e
(3.11) H(A;γ;s,t;p,q)=H(A;γ ;t−s;p,q).
s
Lemma3.6togetherwithEquation(3.11)impliestheuseful
HOLONOMYANDPARALLELTRANSPORT... 9
Corollary3.8. GivenaconnectionAonP,acurveγ inM,twopointss,t ∈ Iobeying
s<t,p∈P andq ∈P ,generalelementshandkofGandagaugetransformation
γ(s) γ(t)
σ ∈ G, the paralleltransportofγ from p to q alongγ from s to t satisfiesthe following
identities:
H(A;γ;s,t;pg,qh)=h−1H(A;γ;s,t;p,q)g;
H(Aσ;γ;s,t;p,q)=g (q)−1H(A;γ;s,t;p,q)g (p).
σ σ
4. ISOMORPHISMS OF PRINCIPAL BUNDLES AND GENERALIZEDGAUGE
TRANSFORMATIONS
π π
LetP → M,P → M twoprincipalbundlesoverthesamemanifoldM andwiththe
samestructuregroupeG; therightactionofGonP,resp.P, isdenotedbyR•, resp.R•,
orsimplyby(p,ge)7→pg,resp.(p,g)7→pg,giventhecase.
e e
Definition4.1. GiventwoprincipalbundlesP,P asabove,aG-equivariantmapσ from
e e
P toP isasmoothmapfromP toP satisfyingthetwoproperties:
e
π◦σ =π,
(4.1) e e
σ◦R =R ◦σ, ∀g ∈G.
g g
e
ThesetofallsuchmapsisdenotedbyG .
P,P
e
Remark4.2. ThesetG ,foragivenprincipalbundleP,isthesetofgaugetransforma-
P,P e
tionsofP.
GiventwoprincipalbundlesP,P overM asabove,itispossibletoformoutofthema
manifoldasfollows:
e
Definition4.3. GiventwoprincipalG-bundlesP andP overthesamebasespaceM,their
fibredproduct,denotedusuallybyP ⊙P,isdefinedas
e
P ⊙P: = (p,p)∈P ×P: π(p)=π(p) .
e
n o
ThereisanaturalmapπefromthefiberedproduectP ⊙P toeMe,whichissimply
π(p,p): =π(p)=π(p), (p,p)∈P ⊙P.
e
Additionally,P ⊙P receivesarightG×G-action:
e e e e e
(p,p;(g,h))7→(pg,ph), ∀(p,p)∈P ⊙P,(g,h)∈G×G.
e
Itisclearthattheaboveactionisfree,asbothactionsofGonP andP arefree;moreover,
consideringthefiebre e e e
P ⊙P : =π−1({x}), e
x
itfollowsimmediatelythatthe(cid:16)actionof(cid:17)G×Gistransitiveonit.
e
Thesetwofactsarenotincidental,becauseofthefollowing
Proposition4.4. The fibred product P ⊙P is a principal G×G-bundle over M, with
projectionπ.
e
Proof. If U is an open set of M, let me denote by ϕ , resp. ϕ , the trivialization of P
U U
overU,resp.ofP overU. Atrivializationϕ ofP ⊙P overU maythusbedefinedvia
U
ϕ: π−1(U)−→U ×(G×G) e
e e
(p,p)7−→(π(p);(pr ◦ϕ )(p),(pr ◦ϕ )(p)).
2 U 2 U
e e e
10 C.A.ROSSI
where pr denotes the projection from U ×G onto G. These maps are invertible, their
2
inversesbeinggivenby
ϕ−1: U ×(G×G)−→π−1(U)
U
(x;g,h)7−→ ϕ−1(x,g),ϕ−1(x,h) .
U U
Itisclearfromtheirdefinitionthatthemaps(cid:0)ϕ andtheirinversesa(cid:1)resmooth. Hence,I
U
e
haveobtainedatrivializationofthefibredproductP ⊙P.
For the sake of completeness, let me write down explicitly the transition maps of the
G×G-principalbundleP ⊙P: e
ϕ : U ∩V −→Diff(G×G)
U,V
e
x7−→R ×R ,
ϕU,V(x) ϕU,V(x)
whereϕU,V,resp.ϕU,V,arethetransitionmapsofP,reespe.P w.r.t.thetrivializationsϕU,
ϕ ,resp.ϕ ,ϕ ,forU,V anytwoopensubsetsofM withnontrivialintersection. (cid:3)
V U V
e e
Remark4.5. LetmenoticethatthefibredproductmaybealsoseenasaprincipalG-bundle
e e
overP:infact,byitsverydefinition,
P ⊙P =π∗(P),
and the latter manifold inherits clearly a principal G-bundle structure over P. (Equiva-
e e
lently,thefibredproductmaybealsoviewedasaG-bundleoverP,asP ⊙P =π∗(P).)
Remark 4.6. The fibred product of two principal bundles over the same base space and
e e e
with thesame structuregroupmaybeseen asananalogueoftheWhitneysumof vector
bundlesforprincipalbundles.
Furthermore,itisclearthatthereisacanonicalisomorphism
P ⊙P ∼=P ⊙P,
foranytwoprincipalbundlesP,P overthesamebasespaceM.
e e
Now,thereisaleftactionofG×GonGspecifiedbytherule:
e
c: G×G−→Diff(G)
(g,h)7−→c(g,h)k: =hkg−1.
ItisquiteevidentthattherestrictionofctothediagonalsubgroupGofG×Ggivesthe
usual conjugation of G on itself; therefore, one can speak of the above action as of the
generalizedconjugationinG.
Definition4.7. UnderthesamehypothesesasinDefinition4.3,thesetofsmoothG×G-
G×G
equivariant maps from P ⊙ P to G, denoted by C∞ P ⊙P,G , is the subset of
C∞ P ⊙P,G ofthosemapsK satisfyingtheequiva(cid:16)riancew.r.t(cid:17).thegeneralizedconju-
e e
gati(cid:16)on (cid:17)
e
(4.2) K(pg,ph)=c g−1,h−1 K(p,p), ∀(p,p)∈P ⊙P,(g,h)∈G×G.
ToagivenprincipalG(cid:0)-bundleP(cid:1)overM,onecanassociate thecanonicalmapφ on
e e e e P
P ⊙P withvaluesinGbytherule
(4.3) q =pφ (p,q),
P