ebook img

Highly Efficient Resource Allocation Techniques in 5G for NOMA-based Massive MIMO and PDF

108 Pages·2017·2.13 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Highly Efficient Resource Allocation Techniques in 5G for NOMA-based Massive MIMO and

WWeesstteerrnn UUnniivveerrssiittyy SScchhoollaarrsshhiipp@@WWeesstteerrnn Electronic Thesis and Dissertation Repository 9-30-2016 12:00 AM HHiigghhllyy EEffifficciieenntt RReessoouurrccee AAllllooccaattiioonn TTeecchhnniiqquueess iinn 55GG ffoorr NNOOMMAA-- bbaasseedd MMaassssiivvee MMIIMMOO aanndd RReellaayyiinngg SSyysstteemmss Xin Liu, The University of Western Ontario Supervisor: Xianbin Wang, The University of Western Ontario A thesis submitted in partial fulfillment of the requirements for the Master of Engineering Science degree in Electrical and Computer Engineering © Xin Liu 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Electrical and Computer Engineering Commons RReeccoommmmeennddeedd CCiittaattiioonn Liu, Xin, "Highly Efficient Resource Allocation Techniques in 5G for NOMA-based Massive MIMO and Relaying Systems" (2016). Electronic Thesis and Dissertation Repository. 4136. https://ir.lib.uwo.ca/etd/4136 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The explosive proliferation of smart devices in the 5-th generation (5G) network expects 1,000-fold capacity enhancement, leading to the urgent need of highly resource-efficient tech- nologies. Non-orthogonal multiple access (NOMA), a promising spectral efficient technology for 5G to serve multiple users concurrently, can be combined with massive multiple input multipleoutput(MIMO)andrelayingtechnology,toachievehighlyefficientcommunications. Hence, this thesis studies the design and resource allocation of NOMA-based massive MIMO andrelayingsystems. Due to hardware constraints and channel condition variation, the first topic of the thesis developsefficientantennaselectionanduserschedulingalgorithmsforsumratemaximization intwoMIMO-NOMAscenarios. Inthesingle-bandscenario,theproposedalgorithmimproves antenna search efficiency by limiting the candidate antennas to those are beneficial to the rel- evant users. In the multi-band scenario, the proposed algorithm selects the antennas and users with the highest contribution total channel gain. Numerical results show that our proposed algorithmsachievesimilarperformancetootheralgorithmswithreducedcomplexity. The second part of the thesis proposes the relaying and power allocation scheme for the NOMA-assisted relaying system to serve multiple cell-edge users. The relay node decodes its own message from the source NOMA signal and transmits the remaining part of signal to cell-edge users. The power allocation scheme is developed by minimizing the system outage probability. To further evaluate the system performance, the ergodic capacity is approximated by analyzing the interference at cell-edge users. Numerical results proves the performance improvementoftheproposedsystemoverconventionalorthogonalmultipleaccessmechanism. Keywords: 5G;MassiveMIMO;NOMA;Relaying;ResourceAllocation ii Acknowlegements The completion of this thesis involves the contribution and supports by a great number of people, thanks to whom my graduate study is a valuable and unforgettable experience in my life. I would like to express my deep gratitude for Prof. Xianbin Wang for offering me the opportunity to study in the University of Western Ontario. His enlightening supervision and foresightmotivatedmetoidentifythecutting-edgeresearchtopics,developin-depthideasand achieve efficient research progress. His kind patience also helps my professional development through exploration of different research methods. The research and communication ability I learnedfromhimwillsignificantlybenefitmyfutureworkandlife. Iwouldalsothankmycolleagues,Dr. AydinBehnadandDr. GuanghuiSong,thepostdoc- toralfellowsintheresearchgroupfortheirwarm-heartedhelpwithsomecriticalmathematical and technical details in my research. I gained lots of technical knowledge by discussing with themfrequently. Additionally, many thanks to my research group, friends from other groups, faculty and staff members of University of Western Ontario who have helped me with my study or life so thatIwasabletoovercomevariousdifficultiesandfinallycompletedthisthesis. EventuallyIwouldliketodemonstratemyspecialthankstomybelovedfatherandmother. They will always support me with any physical and spiritual emotional support they can pro- vide. iii Contents Abstract ii Acknowlegements iii ListofFigures vi ListofTables vii ListofAppendices viii ListofAbbreviations,Symbols,andNomenclature ix 1 Introduction 1 1.1 Backgroundof5G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ResearchMotivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 AdvantagesofSpectralandPowerEfficientTechnologies . . . . . . . . 3 1.2.2 ChallengesforResourceAllocation . . . . . . . . . . . . . . . . . . . 5 1.3 ResearchObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 TechnologiesforEfficientUtilizationofResourcesin5G 13 2.1 PrinciplesofResource-Efficienttechnologiesin5G . . . . . . . . . . . . . . . 13 2.1.1 NOMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 DrawbacksofConventionalOMA . . . . . . . . . . . . . . . . . . . . 14 NOMAAdvantagesoverOMAandNOMAPrinciple . . . . . . . . . . 15 NOMAPerformanceinTwo-userCase . . . . . . . . . . . . . . . . . . 18 2.1.2 MassiveMIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.3 RelayingTechnology . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 ChallengesofUtilizingNOMA,MIMOandRelays . . . . . . . . . . . . . . . 23 2.2.1 UserSchedulingandPowerAllocationinNOMA . . . . . . . . . . . . 23 2.2.2 AntennaSelectionandUserSchedulinginMassiveMIMO . . . . . . . 24 2.2.3 NOMAAssistedRelayingSystemDesign . . . . . . . . . . . . . . . . 25 2.3 ConsiderationsonNOMAUserPairing . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 UserPairingwithFixedAllocatedPower . . . . . . . . . . . . . . . . 26 2.3.2 UserPairingwithConsiderationofTargetRate . . . . . . . . . . . . . 27 2.4 ConsiderationsonNOMAPowerAllocation . . . . . . . . . . . . . . . . . . . 28 iv 2.4.1 SumRateMaximization . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.2 FairnessConsideration . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 AntennaSelectionAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.1 AntennaSelectionandUseSchedulingBasedonExhaustiveSearch . . 30 2.5.2 AntennaSelectionandUseSchedulingBasedonSuccessiveElimination 33 2.6 CurrentDesignsforNOMA-basedRelayingSystem . . . . . . . . . . . . . . . 34 2.6.1 SystemwithSingleRelay . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 SystemwithMultipleRelayDevices . . . . . . . . . . . . . . . . . . . 36 2.7 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 EfficientAntennaSelectionandUserSchedulingin5GMassiveMIMO-NOMA System 39 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 SystemModelandProblemFormulation . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 MassiveMIMO-NOMASystemModel . . . . . . . . . . . . . . . . . 43 3.2.2 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 AntennaSelectioninSingle-bandTwo-userScenario . . . . . . . . . . . . . . 45 3.3.1 PowerAllocationScheme . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.2 EfficientSearchAlgorithmforAntennaSelection . . . . . . . . . . . . 47 3.4 JointAntennaSelectionandUserSchedulinginMulti-bandMulti-userScenario 49 3.5 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.6 Discussion: PracticalExecutionofProposedAlgorithm . . . . . . . . . . . . . 58 3.7 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Power Allocation and Performance of Collaborative NOMA Assisted Relaying System 60 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3 PowerAllocationandPerformance . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.1 PowerAllocationSchemeandOutagePerformance . . . . . . . . . . . 70 4.3.2 ErgodicCapacityPerformance . . . . . . . . . . . . . . . . . . . . . . 75 4.4 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Conclusions 84 5.1 ThesisSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 FutureWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Bibliography 87 A ProofsofEquationsforPerformanceAnalysisinCNARSystem 94 B AnalysisofComplexityforsingle-bandScenario 97 CurriculumVitae 98 v List of Figures 1.1 5Gusecasesandcorrespondingrequirements. . . . . . . . . . . . . . . . . . . 3 2.1 ProtocoldifferencebetweenOMAandNOMA. . . . . . . . . . . . . . . . . . 16 2.2 GeneralcaseofSICmechanismforNOMA. . . . . . . . . . . . . . . . . . . . 16 2.3 AchievablecapacityunderNOMAprotocol. . . . . . . . . . . . . . . . . . . . 19 2.4 DepictionofmassiveMIMOsystem. . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Illustrationofantennaselectionanduserscheduling. . . . . . . . . . . . . . . 24 2.6 NOMA-basedRelayingSystemwithSingleRelay. . . . . . . . . . . . . . . . 36 2.7 NOMA-assistedRelayingSystemwithMultipleRelays. . . . . . . . . . . . . . 37 3.1 MassiveMIMO-NOMAsystemwithantennaselectionanduserscheduling. . . 43 3.2 Userserviceink-thsubbandofmassiveMIMO-NOMAsystem. . . . . . . . . 44 3.3 AcontributionupdateexampleofjointAUcontributionalgorithm. . . . . . . . 52 3.4 Sum rate and outage probability as functions of minimum required PSNR in single-bandscenariowhere M = 18, L = 6. . . . . . . . . . . . . . . . . . . 53 T T 3.5 Sum rate and outage probability as functions of candidate antenna number in single-bandscenariowheret = 9, L = 6. . . . . . . . . . . . . . . . . . . . . 54 T 3.6 Performance of sum rate and outage probability as functions of minimum re- quiredPSNRinmulti-bandscenariowhere M = 10, L = 6, K = 3. . . . . . . 56 R T 3.7 Performance of sum rate and outage probability as functions of candidate user numberinmulti-bandscenariowheret = 10, L = 6, K = 3. . . . . . . . . . . 57 T 4.1 CNARsystemmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 DecodingprocessatMT1forthefirstphasebasedonSIC. . . . . . . . . . . . 66 4.3 SIC-based decoding process at NOMA far user and near user for the second phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 IllustrationofconventionalOMAsystem. . . . . . . . . . . . . . . . . . . . . 77 4.5 DepictionofOMA-basedrelayingsystem. . . . . . . . . . . . . . . . . . . . . 77 4.6 PerformanceofOutageprobabilityasafunctionoftargetrateR whenρ = 15dB. 79 0 2 4.7 OutageprobabilityasafunctionofBStransmitSNRρ whenR = 2. . . . . . 79 1 0 4.8 OutageprobabilityasafunctionofMT1transmitSNRρ whenR = 2. . . . . 81 2 0 4.9 Single-userergodiccapacityasafunctionofMT1transmitSNRρ whenR = 2 0 2andρ = 19dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 1 4.10 Sum ergodic capacity as a function of MT1 transmit SNR ρ when R = 2 and 2 0 ρ = 19dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 1 vi List of Tables 4.1 Tableforvalueofmin{SNR ,SNR }underdifferentconditions . . . . . . . 76 2,1 2,2 4.2 Alistforvalueofmin{SNR ,SNR }indifferentconditions . . . . . . . . . 76 3,1 3,2 vii List of Appendices AppendixAProofsofEquationsforPerformanceAnalysisinCNARSystem . . . . . . 94 AppendixBAnalysisofComplexityforsingle-bandScenario . . . . . . . . . . . . . . . 97 viii Abbreviations 5G The5-thGenerationNetwork AF Amplify-and-Forward AWGN AdditiveWhiteGaussianNoise BS BaseStation CNAR CollaborativeNOMAAssistedRelayingSystem D2D Device-to-Device DF Decode-and-Forward IoT InternetofThings MIMO Multi-InputMulti-Output mmWave millimeter-wave MRC MaximalRatioCombing MT MobileTerminal MU-MIMO Multi-UserMulti-InputMulti-Output NOMA Non-orthogonalMultipleAccess OFDMA OrthogonalFrequencyDivisionMultipleAccess OMA OrthogonalMultipleAccess PSNR Post-processingSignal-to-NoiseRatio R-D Relay-Destination RF RadioFrequency S-R Source-Relay SIC SuccessiveInterferenceCancellation ix SNR Signal-to-NoiseRatio SU-MIMO Single-UserMulti-InputMulti-Output TDMA TimeDivisionMultipleAccess x

Description:
Hence, this thesis studies the design and resource allocation of NOMA-based massive MIMO foresight motivated me to identify the cutting-edge research topics, develop in-depth ideas and achieve efficient .. The future 5-th generation (5G) network is expected to provide high-performance commu-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.