I. SUVOROV higher mathematics TEXTBOOK FOR TECHNICAL SCHOOLS PEACE PUBLISHERS MOSCOW t r ' i* 1: a c i: p u i; i. i s li 1: i. * c y II. 4>. B 0 P O B KYPC BblCIUEn MATEMATUKH X.xr mcxHiinyMoo I'OCyflAPCTBIiHlIOE II3aATEJII.CTBO «DbICUIAfl UlKOJ1A» M O C K D A Ha am.iuiicHOM Rjbinc I. SUVOROV HIGHER MATHEMATICS TEXTBOOK FOR TECHNICAL SCHOOLS Translated from the Hassian f>V M. V. OAK Translation Editor GEOlH.i; YANKOVSKY PEACE PUBLISHERS MOSCOW First Publish) Second Printin CONTENTS A. DASIC ANALYTIC GEOMETRY IN THE PLANE Chapter I. Method of Coordinates Sec. 1. The Coordinates of a Point . . . . 11 Sec. 2. The Sum of Two Directed Segments 13 Sec. 3. The Distanco Between Two Points . . . 14 Sec. 4. Dividing a Segment in a Given Ratio 17 Sec. 5. The Angle of a Straight Line with the Axis . . 18 Sec. 6. Conditions for Parallelism and Perpendicularity 20 Chapter //. The Straight Line Sec. 7. A Straight Line as a Locus......................................... 22 Sec. 8. Equation of a Straight Line (Slope-Intercept Form) . . . . 23 Sec. 0. General Form of the Equation of a Straight Line and Its Special Cases....................................................................................... 25 Sec. 10. Equation of a Straight Line (Intercept Form)........................ 27 Sec. 11. Solved Examples 27 Sec. 12. Construction of a Straight Line When Its Equation Is Given 29 Sec. 13. The Point of Intersection of Two Straight Lines . . . 3 0 Sec. 14. Equation of a Straight Lino Passing Through the Point (xi, y]) in a Given Direction 33 Sec. 15. Equation of a Straight Lino Passing Through Two Given Points (x|t y,) and (x2, y2) . . . 34 Sec. 16. The Anglo Bolwccn Two Straight Lines 35 Chapter ///. Quadric Curves Sec. 17. Equations of the Circle.................................................................. 39 Sec. 18. Solved Examples............................................................................... 40 Sec. 16. The Circle as a Quadric Curvo . . . . . 42 Sec. 20. Ellipso.................................................................................................... 44 Sec. 21. The Equation of an Ellipso.............................................................. 45 Sec. 22. Investigating the Form of an Ellipso from Its Equation . . . 46 Sec. 23. Plotting an Ellipso........................................................................... 48 5 Sec. 24. Relationship Between the Ellipse and the Circle................... 49 Sec. 25. Eccentricity of an Ellipse.............................................................. 51 Sec. 20. Hyperbola................................................................................................. 51 Sec. 27. The Equation of the Hyperbola................................................... 52 Sec. 28. Investigating the Forms of the Hyperbola from Its Equation 53 Sec. 29. Plotting a Hyperbola....................................................................... 54 Sec. 30. Asymptotes of the Hyperbola...................................................... 56 Sec. 31. Eccentricity of a Hyperbola.......................................................... 58 Sec. 32. Equilateral Hyperbola....................................................................... 59 Sec. 33. Solved Examples on the Ellipse and Hyperbola..................... 59 Sec. 34. Parabola ................................................................................................ 60 Sec. 35. Equation of a Parabola.................................................................. 61 Sec. 36. Investigating the Forms of the Parabola from Its Equation 62 Sec. 37. Plotting a Parabola........................................................................... 03 Sec. 38. Formulas for the Transformation of Coordinates..................... 64 Sec. 39. Equation of the Parabola in Parallel Translation of the Coordinate Axes................................................................................ 66 Sec. 40. Equation of an Equilateral Hyperbola Referred to the Asymptotes . . . 67 Sec. 41. Solved Examples............................................................................... 68 Sec. 42. Quadric Curves as Conic Sections.................................................. 70 B. ELEMENTS OF DIFFERENTIAL CALCULUS diopter IV. Theory of Limits Sec. 43. Absolulo Value and Its Properties............................................. 73 Sec. 44. Infinitely Small Quantity (Infinitesimal)..................................... 75 Sec. 45. Variable Quantities, Hounded and rnhonnded......................... 76 Sec. 46. Basic Properties of Infinitesimals.................................................. 76 Sec. 47. Infinitely Large Quantity............................................................... 78 Sec. 48. Relationship Between Infinitely Small and Infinitely Largo Quantities................................................................................................ 79 Sec. 49. The Limit of a Variable Quantity.............................................. 80 Sec. 50. t'lOumctrical Representation of a Number, Variable, and Limit......................................................................................................... 83 Sec. 51. Relationship Between a Variable, Its Limit, and an Infini tesimal ..................................................................................................... 86 Sec. 52. A Variable Can Have (inly One Limit.......................................... 86 Sec. 53. The Limit of an Algebraic Sum .................................................. 87 Sec. 54. The Limit of a Product................................................................. 87 Sec. 55. The Limit of a Quotient................................................................ 88 Sec. :>li. Tho Limit of a Rational Algebraic Expression........................... 90 Sec. 57. The Sign of a Variable and Its Limit......................................... 91 Sec. 58. Conditions for the Existence of a Limit of a Variable . . . . 91 Sec. 59. On the Limit of a Quotient of Infinitesimals............................. 92 Sec. OH. Examples in Finding Limits . . . 92 6 Chapter V. Function and Its Continuity Sec. 61. Argument and Function................................................................... 95 Sec. 62. General Designation of a Function.............................................. 97 Sec. 63. Graphical and Analytical Representation of a Function . . . 93 Sec. 64. Graph of a Function..................................................................... 100 Sec. 65. Increment of the Argument and Function................................ 102 Sec. 66. The Limit of a Function at a Finite Point................................ 104 Sec. 67. The Limit of a Function When x —>- oo.................................... 106 Sec. 68. Some Observations......................................................................... 107 Sec. 69. Continuity of a Function............................................................. 108 Sec. 70. Another Expression for the Condition of Continuity of a Function................................................................................................ 112 Sec. 71. Testing a Function for Continuity................................................ 113 Sec. 72. The Properties of Functions Continuous at a Point . . . . 113 Chapter VI. Derivative Function Sec. 73. Linear Function, Its Rate of Change.......................................... 115 Sec. 74. Examples in Finding Rates of Change..................................... 116 Sec. 75. Derivative Function...................................................................... 119 Sec. 76. Tangent to a Curve........................................................................... 122 Sec. 77. Geometrical Meaning of a Derivative.......................................... 124 Sec. 78. Relationship Between Differentiability and Continuity of ' a Function.....................................................................'.................. 127 Chapter VII. Derivatives of Elementary Functions Sec. 79. Preliminary Remarks...................................................................... 128 Sec. 80. The Derivative of a Constant...................................................... 128 Sec. 81. The Derivative of a Power.......................................................... 128 Sec. 82. The Derivative of tho Product of a Constant and a Function 130 Sec. 83. Tho Derivative of an Algebraic Sum of Functions..................... 131 Sec. 84. The Derivative of a Product of Functions................................. 132 Sec. 85. Tho Derivative of a Fraction.......................................................... 133 Sec. 86. Remarks......................................................... 136 Sec. 87. Tho Function of a Function.......................................................... 136 Sec. 88. The Derivative of a Function of a Function............................. 136 Sec. 89. Tho Limit of the Ratio of a Sino to an Arc............................. 139 Sec. 90. Derivatives of Trigonometric Functions..................................... HO Sec. 91. Two Systems of Logarithms. Tho Number r. Changing from One System of Logarithms to thoO ther....................................... 143 Sec. 92. The Derivative of a Logarithm...................................................... 145 Sec. 93. Monotonic Functions...................................................................... 148 Sec. 94. The Derivative of an Inverse Function..................................... 149 Sec. 95. The Derivative of on Exponential Function............................. |50 Sec. 96. The Derivative of Any Power...................................................... 151 7 Sec. 97. Derivatives of Inverse Trigonometric Functions 151 Sec. 98. Derivatives of Second and Higher Orders . . . 153 Chapter VIII. Studying Functions with the Aid of Their Derivatives Sec. 99. How to Determine Whether a Function Increases, Decreases or Is Constant..................................................................................... 154 Sec. 100. Extreme Value Problems................................................................ 157 Sec. 101. Maximum and Minimum of a Function...................................... 159 Sec. 102. A Test for Extremes........................................................................ 160 Sec. 103. Procedure for Finding Extremes......................... . . . 162 Sec. 104. Examples in Finding Extremes................................................... 162 Sec. 105. Second Derivative Test for Extreme Values.............................. 163 Sec. 106. Extreme Value Problems.................................................................... 167 Sec. 107. Maximum and Minimum of a Function at Points Where the Derivative Has No Value....................................................... 170 Sec. 108. The Direction of Concavity of a Curve . . . . . . 171 Sec. 109. Points of Inflection........................................................................ 172 Sec. 110. Constructing Graphs of Functions............................................... 173 Sec. 111. Mechanical Interpretation of the Second Derivative . . 174 Chapter IX. Differential Sec. 112. Comparing InGnilosimals.............................................................. 176 Sec. 113. Differential of a Function............................................................. 177 Sec. 114. The Differential of an Argument. The Derivative as a Ratio of Differentials................................................................................ 179 Sec. 115. Applying the Concept of Differential to Approximate Calculations........................................................................................ 181 C. ELEMENTS OF INTEGRAL CALCULUS Chapter X. Indefinite Integral Sec. 116. Integration as the In verso of Differentiation......................... 185 Sec. 117. Tho Indefinite Integral as an Expression of the Aggregate of Antiderivatives of a Given Function...................................... 187 Sec. 118. Properties of an Indefinite Integral . . . . . 189 Sec. 119. Integration by Formulas.............................................. . 190 Sec. 120. Integration by Substitution . . . . . . . . 191 Sec. 121. Standard Integrals and Their Uses............................................... 195 Sec. 122. Integration of Powers of sin *, cos x, tan x, cot r ............. 201 Sec. 123. ^ V\i2— x‘ <lx 203 Sec. 124. Remarks . . oqx 8