Higher Ap´ery-like numbers arising from 9 special values of the spectral zeta function 0 0 for the non-commutative harmonic oscillator 2 n a Kazufumi Kimoto J 0 January 20, 2009 2 ] T Abstract N AgeneralizationoftheAp´ery-likenumbers,whichisusedtodescribethespecialvaluesζQ(2)andζQ(3)of . thespectralzetafunctionforthenon-commutativeharmonicoscillator, areintroducedandstudied. Infact, h we give a recurrence relation for them, which shows a ladder structure among them. Further, we consider t a the‘rationalpart’ofthehigherAp´ery-likenumbers. Wediscussseveralkindsofcongruencerelationsamong m them, which are regarded as an analogue of theones among Ap´ery numbers. [ 2 1 Introduction v 8 The non-commutative harmonic oscillator is the system of differential equations defined by the operator 5 6 α 0 1 d2 1 0 1 d 1 .0 Q=Qα,β := 0 β −2dx2 + 2x2 + 1 −0 xdx + 2 , (1.1) 1 (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) 0 whereαandβ arerealparameters. Inthispaper,wealwaysassumethatα>0,β >0andαβ >1. Underthese 9 conditions,onecanshowthatthe operatorQdefinesanunbounded, positive,self-adjointoperatoronthespace 0 : L2(R;C2) of C2-valued square integrable functions which has only a discrete spectrum, and the multiplicities v m(λ) of the eigenvalues λ Spec(Q) are uniformly bounded [22]. Hence, in this case, it is meaningful to define i ∈ X its spectral zeta function ζ (s) = TrQ−s = m(λ)λ−s. This series converges absolutely if s > 1, Q λ∈Spec(Q) ℜ r andhencedefinesaholomorphicfunctiononthehalfplane s>1. Further,ζ (s)ismeromorphicallycontinued a P ℜ Q to the whole complex plane C which has ‘trivial zeros’ at s=0, 2, 4,... (see [7], [21]). − − The aim of this paper is to study the higher Ap´ery-like numbers J (n) defined by k (1 x4)(1 x4 x4) ndx dx dx J (n):=2k − 1 − 2··· k 1 2··· k k (1 x2 x2)2 1 x2 x2 Z[0,1]k(cid:18) − 1··· k (cid:19) − 1··· k fork 2 andn 0,whichareageneralizationofthe Ap´ery-likenumbersJ (n)andJ (n)studiedin[11]. This 2 3 ≥ ≥ object arises from the special values of the spectral zeta function ζ (s): In [8], the generating functions of the Q numbers J (n) and J (n) are used to describe the special values ζ (2) and ζ (3) of the spectral zeta function 2 3 Q Q ζ (s). Similarly, the higher Ap´ery-like numbers J (n) are closely related to the special values ζ (k) (see 3.3). Q k Q § We first show that J (n) satisfy three-term (inhomogeneous) recurrence relations, which is translated to k (inhomogeneous) singly confluent Heun differential equations for their generating functions. The point is that theserelationsordifferentialequationsareconnectingJ (n)’sandJ (n)’s. Thisfactimplies thattherecould k k−2 be a certainrelationbetweenζ (k) andζ (k 2). It wouldbe veryinteresting ifone canutilize these relations Q Q − to understand a modular interpretation of ζ (4),ζ (6),... based on that of ζ (2) (see [12]). We also notice Q Q Q thatthese recurrencerelationsquite resembleto thoseforAp´ery numbers usedtoprovethe irrationalityofζ(2) and ζ(3) (see [27]), and this is why we call J (n) the (higher) Ap´ery-like numbers. k 1 2 K. Kimoto By a suitable change of variable in the differential equation, we also obtain another kind of recurrence relations, which allow us to define the rational part of the higher Ap´ery-like numbers (or normalized higher Ap´ery-like numbers) J˜ (n). In fact, each J (n) is a linear combination of the Riemann zeta values ζ(k),ζ(k k k − 2),... and the coefficients are given by J˜ (n)’s. Since there are various kind of congruence relations satisfied m by Ap´ery numbers (see, e.g. [4], [5], [1]), it would be natural and interesting to find an analogue for our higher Ap´ery-like numbers. Actually, we give several congruence relations among J˜(n) and J˜(n) in [12]. We add 2 3 such congruence relations among J˜ (n), and give some conjectural congruences. k 2 Ap´ery numbers for ζ(2) and ζ(3) As a quick reference for the readers, we recall the definitions and several properties on the original Ap´ery numbers. 2.1 Ap´ery numbers for ζ(2) Ap´ery numbers for ζ(2) are given by n n 2 n+k n n 2 n+k n ( 1)m−1 k ( 1)n+m−1 A (n)= , B (n)= 2 − + − . 2 k=0(cid:18)k(cid:19) (cid:18) k (cid:19) 2 k=0(cid:18)k(cid:19) (cid:18) k (cid:19) m=1 m2 m=1m2 mn n+mm ! X X X X (cid:0) (cid:1)(cid:0) (cid:1) These numbers satisfy a recurrence relation of the same form n2u(n) (11n2 11n+3)u(n 1) (n 1)2u(n 2)=0 (n 2) (2.1) − − − − − − ≥ with initial conditions A (0) = 1,A (1) = 3 and B (0) = 0,B (1) = 5. The ratio B (n)/A (n) converges to 2 2 2 2 2 2 ζ(2), and this convergence is rapid enough to prove the irrationality of ζ(2). Consider the generating functions ∞ ∞ (t)= A (n)tn, (t)= B (n)tn, (t)= (t)ζ(2) (t). 2 2 2 2 2 2 2 A B R A −B n=0 n=0 X X It is proved that L (t)=0, L (t)= 5, L (t)=5, 2 2 2 2 2 2 A B − R where L is a differential operator given by 2 d2 d L =t(t2+11t 1) +(3t2+22t 1) +(t+3). 2 − dt2 − dt The function (t) is also expressed as follows: 2 R 1 1 dxdy (t)= . 2 R 1 xy+txy(1 x)(1 y) Z0 Z0 − − − The family Q2 : 1 xy +txy(1 x)(1 y) = 0 of algebraic curves, which comes from the denominator of t − − − the integrand, is birationally equivalent to the universal family C2 of elliptic curves having rational 5-torsion. t Moreover, the differential equation L (t) = 0 is regarded as a Picard-Fuchs equation for this family, and 2 2 A (t) is interpreted as a period of C2 (see [2]). A2 t Higher Ap´ery-like numbers arising from NCHO 3 2.2 Ap´ery numbers for ζ(3) Ap´ery numbers for ζ(3) are given by n n 2 n+k 2 n n 2 n+k 2 n 1 k ( 1)m−1 A (n)= , B (n)= + − 3 k=0(cid:18)k(cid:19) (cid:18) k (cid:19) 3 k=0(cid:18)k(cid:19) (cid:18) k (cid:19) m=1m3 m=12m3 mn n+mm ! X X X X (cid:0) (cid:1)(cid:0) (cid:1) These numbers satisfy a recurrence relation of the same form n3u(n) (34n3 51n2+27n 5)u(n 1)+(n 1)3u(n 2)=0 (n 2) − − − − − − ≥ with initial conditions A (0) = 1,A (1) = 5 and B (0) = 0,B (1) = 6. The ratio B (n)/A (n) converges to 3 3 3 3 3 3 ζ(3) rapidly enough to allow us to prove the irrationality of ζ(3). Consider the generating functions ∞ ∞ (t)= A (n)tn, (t)= B (n)tn, (t)= (t)ζ(3) (t). 3 3 3 3 3 3 3 A B R A −B n=0 n=0 X X It is proved that L (t)=0, L (t)=5, L (t)= 5, 3 3 3 3 3 3 A B R − where L is a differential operator given by 3 d3 d2 d L =t2(t2 34t2+1) +t(6t2 153t+3) +(7t2 112t+1) +(t 5). 3 − dt3 − dt2 − dt − The function (t) is also expressed as follows: 3 R 1 1 1 dxdydz (t)= . 3 R 1 (1 xy)z txyz(1 x)(1 y)(1 z) Z0 Z0 Z0 − − − − − − The family Q3 : 1 (1 xy)z txyz(1 x)(1 y)(1 z) = 0 of algebraic surfaces coming from the denomi- t − − − − − − nator of the integrand is birationally equivalent to a certain family C3 of K3 surfaces with Picard number 19. t Furthermore, the differential equation L (t)=0 is regarded as a Picard-Fuchs equation for this family, and 3 3 A (t) is interpreted as a period of C3 (see [3]). A3 t 2.3 Congruence relations for Ap´ery numbers Ap´ery numbers A (n) and A (n) have various kind of congruence properties. Here we pick up severalof them, 2 3 for which we will discuss an Ap´ery-like analogue later. Proposition2.1. Letpbeaprimeandn=n +n p+ +n pk bethep-aryexpansionofn Z (0 n <p). 0 1 k ≥0 j ··· ∈ ≤ Then it holds that k k A (n) A (n ) (mod p), A (n) A (n ) (mod p). 2 2 j 3 3 j ≡ ≡ j=0 j=0 Y Y Proposition 2.2 ([4, Theorems 1 and 2]). For all odd prime p, it holds that A (mpr 1) A (mpr−1 1) (mod pr), 2 3 − ≡ − A (mpr 1) A (mpr−1 1) (mod pr) 3 3 − ≡ − for any m,r Z . These congruence relations hold modulo p3r if p 5 (known and referred to as a super- >0 ∈ ≥ congruence). 4 K. Kimoto We denote by η(τ) the Dedekind eta function ∞ η(τ)=q1/24 (1 qn), q =e2πiτ ( τ >0). (2.2) − ℑ n=1 Y Proposition 2.3 ([28, Theorem 13.1]). For any odd prime p and any m,r Z with m odd, it holds that >0 ∈ A (mpr−1) λ A (mpr−1−1)+( 1)(p−1)/2p2A (mpr−2−1) 0 (mod pr). (2.3) 2 2 − p 2 2 − 2 2 ≡ Here λ is defined by n ∞ ∞ λ qn =η(4τ)6 =q (1 q4n)6. n − n=1 n=1 X Y Proposition 2.4 ([5, Theorem 4]). For any odd prime p and any m,r Z with m odd, it holds that >0 ∈ A (mpr−1) γ A (mpr−1−1)+p3A (mpr−2−1) 0 (mod pr). (2.4) 3 2 − p 3 2 3 2 ≡ Here γ is defined by n ∞ ∞ γ qn =η(2τ)4η(4τ)4 =q (1 q2n)4(1 q4n)4. n − − n=1 n=1 X Y 3 Ap´ery-like numbers for ζ (2) and ζ (3) Q Q We introduce the Ap´ery like numbers J (n) and J (n), and give a brief explanation on their basic properties 2 3 and the connection between the special values ζ (2),ζ (3) of the spectral zeta function ζ (s). Q Q Q 3.1 Definition We define the Ap´ery-like numbers for ζ (2) and ζ (3) by Q Q 1 1 (1 x4)(1 x4) n dx dx J (n):=4 − 1 − 2 1 2 , 2 (1 x2x2)2 1 x2x2 Z0 Z0 (cid:18) − 1 2 (cid:19) − 1 2 1 1 1 (1 x4)(1 x4x4) ndx dx dx J (n):=8 − 1 − 2 3 1 2 3. 3 (1 x2x2x2)2 1 x2x2x2 Z0 Z0 Z0 (cid:18) − 1 2 3 (cid:19) − 1 2 3 The sequences J (n) and J (n) satisfy the recurrence formula (Propositions 4.11 and 6.4 in [8]) 2 3 { } { } 4n2J (n) (8n2 8n+3)J (n 1)+4(n 1)2J (n 2)=0, (3.1) 2 2 2 − − − − − 2n(n 1)! 4n2J (n) (8n2 8n+3)J (n 1)+4(n 1)2J (n 2)= − (3.2) 3 3 3 − − − − − (2n 1)!! − with the initial conditions 9 21 1 J (0)=3ζ(2), J (1)= ζ(2); J (0)=7ζ(3), J (1)= ζ(3)+ . 2 2 3 3 4 4 2 It is notable that the left-hand sides of these relations have the same shape. Since the relations (3.1),(3.2) and the one (2.1) for A (n) have quite close shapes, we call the numbers J (n) and J (n) the Ap´ery-like numbers. 2 2 3 Higher Ap´ery-like numbers arising from NCHO 5 3.2 Generating functions and their differential equations The generating functions for J (n) and J (n) are defined by 2 3 ∞ 1 1 1 x2x2 w (t):= J (n)tn =4 − 1 2 dx dx , (3.3) 2 2 (1 x2x2)2 t(1 x4)(1 x4) 1 2 n=0 Z0 Z0 − 1 2 − − 1 − 2 X ∞ 1 1 1 1 x2x2x2 w (t):= J (n)tn =8 − 1 2 3 dx dx dx . (3.4) 3 3 (1 x2x2x2)2 t(1 x4)(1 x4x4) 1 2 3 n=0 Z0 Z0 Z0 − 1 2 3 − − 1 − 2 3 X By the recurrence relations (3.1) and (3.2), we get the differential equations w (t)=0, (3.5) H 2 D 1 3 w (t)= F 1,1; ;t , (3.6) DH 3 22 1 2 (cid:18) (cid:19) where denotes the singly confluent Heun differential operator given by H D d2 d 3 =t(1 t)2 +(1 3t)(1 t) +t . (3.7) DH − dt2 − − dt − 4 (3.5) is solved in [18] as 3ζ(2) 1 1 t w (t)= F , ;1; . 2 2 1 1 t 2 2 t 1 − (cid:18) − (cid:19) Here F (a,b;c;z) is the Gaussian hypergeometric function. Now it is immediate that 2 1 n 1 2 n J (n)=3ζ(2) ( 1)j −2 . (3.8) 2 − j j j=0 (cid:18) (cid:19)(cid:18) (cid:19) X Similarly, (3.6) is solved in [11] as 7ζ(3) 1 1 t ∞ n 1 2 n k−1 1 1 −2 w (t)= F , ;1; 2 ( 1)k −2 −2 tn. 3 1 t2 1 2 2 t 1 − − k k (2j+1)3 j − (cid:18) − (cid:19) n=0 k=0 (cid:18) (cid:19)(cid:18) (cid:19)j=0 (cid:18) (cid:19) X X X Therefore it follows that n 1 2 n n 1 2 n j−1 1 1 −2 J (n)=7ζ(3) ( 1)j −2 2 ( 1)j −2 −2 . (3.9) 3 − j j − − j j (2k+1)3 k j=0 (cid:18) (cid:19)(cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:18) (cid:19)k=0 (cid:18) (cid:19) X X X Remark 3.1. The function 1 1 1 t W (T)= F , ;1;T2 = (1 t)w (t) T2 = 2 2 1 2 2 2 3ζ(2) − t 1 (cid:18) (cid:19) (cid:18) − (cid:19) satisfies the differential equation d2 d T(T2 1) +(3T2 1) +T W (T)=0, − dT2 − dT 2 (cid:18) (cid:19) which can be regarded as a Picard-Fuchs equation for the universal family of elliptic curves having rational 4-torsion [12]. This is an analogue of the result [2] for the Ap´ery numbers for ζ(2) (see also Section 2.1). It is natural to ask whether there is such a modular interpretation for w (t) (or “W (T)”). We have not obtained 3 3 an answer to this question so far. ♦ 6 K. Kimoto 3.3 Connection to the special values of ζ (s) Q We also introduce another kind of generating functions for J (n) as k ∞ 1 1 1 dx dx g (z):= −2 J (n)zn =4 1 2 , 2 2 nX=0(cid:18) n (cid:19) Z0 Z0 (1−x21x22)2+z(1−x41)(1−x42) ∞ 1 1 1 p1 dx dx dx g (z):= −2 J (n)zn =8 1 2 3 . 3 2 nX=0(cid:18) n (cid:19) Z0 Z0 Z0 (1−x21x22x23)2+z(1−x41)(1−x42x43) The special values of ζ (s) at s=2,3 are given as followps. Q Theorem 3.2 (Ichinose-Wakayama [8]). If αβ >2 (i.e. 0<1/(1 αβ)<1), then − α+β 2 1 α β 2 1 ζ (2)=2 ζ(2, )+ − g , Q 2 2 αβ(αβ−1)! 2 (cid:18)α+β(cid:19) (cid:18)αβ−1(cid:19)! p α+β 3 1 α β 2 1 ζ (3)=2 ζ(3, )+3 − g , Q 3 2 αβ(αβ−1)! 2 (cid:18)α+β(cid:19) (cid:18)αβ−1(cid:19)! where ζ(s,x)= ∞ (n+x)−s ispthe Hurwitz zeta function. n=0 Remark 3.3. WePcan determine the functions g (x) and g (x) as follows: 2 3 g (x)=J (0)g (x), g (x)=J (0)g (x)+g (x), 2 2 2 3 3 2 3 where e e e 1 1 1 x 2 1 3 2 g (x):= F , ;1; = F , ;1; x , 2 2 1 2 1 √1+x 4 4 1+x 4 4 − (cid:18) (cid:19) (cid:18) (cid:19) ge (x):= −2 ∞ ( 1)n −12 3 x nn−1 1 −12 −2. 3 √1+x − n 1+x (2j+1)3 j n=1 (cid:18) (cid:19) (cid:18) (cid:19) j=0 (cid:18) (cid:19) X X e See [18] and [11] for detailed calculation. ♦ 4 Higher Ap´ery-like numbers Looking at the definition of J (n) and J (n), it is natural to introduce the numbers J (n) by 2 3 k (1 x4)(1 x4 x4) ndx dx dx J (n):=2k − 1 − 2··· k 1 2··· k. k (1 x2 x2)2 1 x2 x2 Z[0,1]k(cid:18) − 1··· k (cid:19) − 1··· k We refer to J (n) as higher Ap´ery-like numbers. In fact, the generating function k ∞ 1 dx dx ...dx g (z):= −2 J (n)zn =2k 1 2 k (4.1) k k nX=0(cid:18) n (cid:19) Z[0,1]k (1−x21x22...x2k)2+z(1−x41)(1−x42...x4k) and its further generalizations are used to describe pthe ‘higher’ special values ζ (k) (k 4) like Theorem 3.2 Q ≥ (see Remark 4.1 below). It is immediate that J (0)=(2k 1)ζ(k). Further, as we mentioned in [11], the formula k − 3⌊k/2⌋−1 1 1 1 ( 1)k J (1)= ζ k 2m, + − − (4.2) k 4 4m − 2 2k−1 m=0 (cid:18) (cid:19) X Higher Ap´ery-like numbers arising from NCHO 7 holds (see 6.2 for the calculation). It is directly verified that § 4J (1) 3J (0)=J (1) (k 4). k k k−2 − ≥ Remark 4.1. We can calculate that 4 2 α+β α β 1 ζ (4)=2 ζ(4,1/2)+4 − g Q 4 2 αβ(αβ−1)! (cid:18)α+β(cid:19) (cid:18)αβ−1(cid:19) p α β 2 16dx dx dx dx 1 2 3 4 +2 − (cid:18)α+β(cid:19) Z[0,1]4 (1−x21x22x23x24)2+γ1(1−x41x42)(1−x43x44) 4 α β p 16dx1dx2dx3dx4 + − , (cid:18)α+β(cid:19) Z[0,1]4 (1−x21x22x23x24)2+γ1(1−x41x42)(1−x43x44)+γ2(1−x41)(1−x42)(1−x43)(1−x44)! p where γ =1/(αβ 1) and γ =αβ/(αβ 1)2. 1 2 − − ♦ Similar to the case of J (n) and J (n), the higher Ap´ery-like numbers J (n) also satisfy a three-term 2 3 k recurrence relation as follows. Theorem 4.2. The numbers J (n) satisfy the recurrence relations k 4n2J (n) (8n2 8n+3)J (n 1)+4(n 1)2J (n 2)=J (n) (4.3) k k k k−2 − − − − − for n 2 and k 4. ≥ ≥ We give the proof of Theorem 4.2 in 5. It is remarkable that the left-hand side of (4.3) has a common § shape with those of (3.1) and (3.2), and (4.3) gives a ‘vertical’ relation among J (n)’s, i.e. it connects J (n)’s k k and J (n)’s. k−2 Example 4.3. First severalterms of J (n) are given by 4 45 9 615 807 J (0)=15ζ(4), J (1)= ζ(4)+ ζ(2), J (2)= ζ(4)+ ζ(2), 4 4 4 4 16 64 1024 2205 3745 129735 1044135 J (3)= ζ(4)+ ζ(2), J (4)= ζ(4)+ ζ(2),... 4 4 256 4096 16384 1048576 We also see that 9 4J (1) 3J (0)= ζ(2)=J (1), 4 4 2 − 4 123 16J (2) 19J (1)+4J (0)= ζ(2)=J (2), 4 4 4 2 − 64 441 36J (3) 51J (2)+16J (1)= ζ(2)=J (3), 4 4 4 2 − 256 25947 64J (4) 99J (3)+36J (2)= ζ(2)=J (4). 4 4 4 2 − 16384 ♦ Define another kind of generating function for J (n) by k ∞ 1 1 1 1 x2 x2 w (t):= J (n)tn =2k − 1··· k dx dx dx . (4.4) k k ··· (1 x2 x2)2 (1 x4)(1 x4 x4)t 1 2··· k n=0 Z0 Z0 Z0 − 1··· k − − 1 − 2··· k X Theorem 4.2 readily implies the 8 K. Kimoto Corollary 4.4. The differential equation w (t) w (0) k−2 k−2 w (t)= − (4.5) DH k 4t holds for k 4. Here is the differential operator given in (3.7). H ≥ D Put ( 1)n 1/2 J (n):=0, J (n):= − , J (n):= − J (n) (k 2). 0 1 k k n n ≥ (cid:18) (cid:19) By Theorem 4.2, we have 8n3J (n) (1 2n)(8n2 8n+3)J (n 1)+2(n 1)(1 2n)(3 2n)J (n 2)=2nJ (n) k k k k−2 − − − − − − − − for k 2 and n 1. Hence, if we put ≥ ≥ d3 d2 d :=8z2(1+z)2 +24z(1+z)(1+2z) +2(4+27z+27z2) +3(1+2z), (4.6) DW dz3 dz2 dz then we have the following (See also [11, Proposition A.3]). Corollary 4.5. The differential equations g (z)=0, W 2 D 2 g (z)= , DW 3 −1+z d g (z) g (0) k−2 k−2 g (z)=2z − (k 4) DW k dz z ≥ (cid:18) (cid:19) hold. 5 Proof of Theorem 4.2 5.1 Setting the stage Assume k 2. We notice that ≥ ∞ ∞ ∞e−(t1+···+tk)/2(1 e−2t1)n(1 e−2(t2+···+tk))n J (n)= − − dt dt k Z0 Z0 ···Z0 (1−e−(t1+···+tk))2n+1 1··· k ∞ e−u/2 u tk−2 = du (1 e−2t)n(1 e−2u+2t)ndt (1 e−u)2n+1 (k 2)! − − Z0 − Z0 − for each n 0. Let us introduce ≥ u tk−2 I(k) =I(k) (u):= (1 e−2t)n(1 e−2u+2t)mdt n,m n,m (k 2)! − − Z0 − for n,m 0. We also put ≥ 1 1 I(k) (u):= (I(k) (u)+I(k) (u)), I(k) (u):= (I(k) (u) I(k) (u)). n,m 2 n,m m,n n,m 2 n,m − m,n I(k) (u) is symmetric in n and m if k =2 so that I(2) (u)e=0, but I(k) (u)=0 in general. n,m n,m n,m 6 e e Higher Ap´ery-like numbers arising from NCHO 9 It is convenient to set I(k) (u)=0 when k<2. We see that n,m 1 ∞ enu J (n)= I(k)(u)du. k 22n+1 (sinhu)2n+1 n,n Z0 2 Thus we also set J (n) = 0 if k < 2. Under these convention, the following discussion for J (n) is reduced to k k the one given by Ichinose and Wakayama [8] when k =2,3. For later use, we define a(k)(u):=I(k)(u)=I(k)(u) (n 0), n n,n n,n ≥ 1 b(k)(u):= I(k) (u)+I(k) (u) =I(k) (n 1), n 2 n,n−1 n−1,n n,n−1 ≥ 1(cid:16) (cid:17) ˜b(k)(u):= I(k) (u) I(k) (u) =I(k) (n 1), n 2 n,n−1 − n−1,n n,n−1 ≥ (cid:16) (cid:17) (k)(u) (k)(u):=enua(k)(u), (k)(u):= Ane (n 0), An n Bn (sinhu)2n+1 ≥ 2 so that 1 ∞ J (n)= (k)(u)du. k 22n+1 Bn Z0 5.2 Recurrence formulas for I(k) (u) n,m Integration by parts implies u d tk−2 I(k−1) = (1 e−2t)n(1 e−2u+2t)mdt n,m dt(k 2)! − − Z0 (cid:18) − (cid:19) u tk−2 d = (1 e−2t)n (1 e−2u+2t)mdt (5.1) − (k 2)! dt − − Z0 − (cid:18) (cid:19) u tk−2 d (1 e−2t)n (1 e−2u+2t)m dt. − (k 2)! − dt − Z0 − (cid:18) (cid:19) when n,m 1. Since ≥ d (1 e−2t)n =2ne−2t(1 e−2t)n−1 dt − − =2n (1 e−2t)n−1 (1 e−2t)n , − − − d (1 e−2u+2t)m = 2(cid:0)me−2u+2t(1 e−2u+2t)m−1 (cid:1) dt − − − = 2m (1 e−2u+2t)m−1 (1 e−2u+2t)m − − − − for n,m 1, we obtain the (cid:0) (cid:1) ≥ Lemma 5.1. The following three relations hold: 1 I(k−1) =(n m)I(k) nI(k) +mI(k) (n,m 1), (5.2) 2 n,m − n,m− n−1,m n,m−1 ≥ 1 nI(k) (2n 1)I(k) +(n 1)I(k) me−2uI(k) = I(k−1) I(k−1) (n 2,m 1), (5.3) n,m− − n−1,m − n−2,m− n−1,m−1 2 n,m − n−1,m ≥ ≥ (cid:16) (cid:17) 1 mI(k) (2m 1)I(k) +(m 1)I(k) ne−2uI(k) = I(k−1) I(k−1) (n 1,m 2). (5.4) n,m− − n,m−1 − n,m−2− n−1,m−1 2 n,m−1− n,m ≥ ≥ (cid:16) (cid:17) 10 K. Kimoto Plugging (5.2) into (5.3), we get I(k) (I(k) +I(k) )+(1 e−2u)I(k) =0 (n 1,m 1), (5.5) n,m− n−1,m n,m−1 − n−1,m−1 ≥ ≥ which is a generalization of (4.14) in [8]. In particular, if we let n=m in (5.5), then we have I(k) 2I(k) +(1 e−2u)I(k) =0. (5.6) n,n− n,n−1 − n−1,n−1 Letting m=n 1 (or n=m 1 and exchanging m by n) in (5.5), we also have another specialization − − I(k) (I(k) +I(k) )+(1 e−2u)I(k) =0 (n 2), n,n−1− n−1,n−1 n,n−2 − n−1,n−2 ≥ I(k) (I(k) +I(k) )+(1 e−2u)I(k) =0 (n 2). n−1,n− n−2,n n−1,n−1 − n−2,n−1 ≥ Adding these equations, we get I(k) =b(k)(u) a(k) (u)+(1 e−2u)b(k) (u) (n 2). (5.7) n,n−2 n − n−1 − n−1 ≥ By specializing m=n in (5.3) and (5.4), we have 1 nI(k) (2n 1)I(k) +(n 1)I(k) ne−2uI(k) = (I(k−1) I(k−1)), (5.8) n,n− − n−1,n − n−2,n− n−1,n−1 2 n,n − n−1,n 1 nI(k) (2n 1)I(k) +(n 1)I(k) ne−2uI(k) = (I(k−1) I(k−1)) (5.9) n,n− − n,n−1 − n,n−2− n−1,n−1 2 n,n−1− n,n for n 2. Similarly, specializing m=n 1 in (5.3) and n=m 1 in (5.4) (and exchanging m by n), we have ≥ − − 1 nI(k) (2n 1)I(k) +(n 1)I(k) (n 1)e−2uI(k) = (I(k−1) I(k−1) ), n,n−1− − n−1,n−1 − n−2,n−1− − n−1,n−2 2 n,n−1− n−1,n−1 1 nI(k) (2n 1)I(k) +(n 1)I(k) (n 1)e−2uI(k) = (I(k−1) I(k−1)) n−1,n− − n−1,n−1 − n−1,n−2− − n−2,n−1 2 n−1,n−1− n−1,n for n 2. Adding each pair of relations, we obtain ≥ 2nI(k) 2(2n 1)I(k) +2(n 1)I(k) 2ne−2uI(k) =I(k−1), (5.10) n,n− − n,n−1 − n,n−2− n−1,n−1 n,n−1 2nI(k) 2(2n 1)I(k) +2(n 1)(1 e−2u)I(k) =I(k−1). (5.11) n,n−1− − n−1,n−1 − − n−1,n−2 en,n−1 The formulas (5.6), (5.10) and (5.11) are rewritten as follows. e Lemma 5.2. The equations a(k)(u)+(1 e−2u)a(k) (u)=2b(k)(u), (5.12) n − n−1 n 1 na(k)(u) (2n 1)b(k)(u)+(n 1)I(k) ne−2ua(k) (u)= ˜b(k−1)(u), (5.13) n − − n − n,n−2− n−1 2 n 1 nb(k)(u) (2n 1)a(k) (u)+(n 1)(1 e−2u)b(k) (u)= ˜b(k−1)(u) (5.14) n − − n−1 − − n−1 2 n hold. As a corollary, we also get Lemma 5.3. The equation na(k)(u) (2n 1)(1+e−2u)a(k) (u)+(n 1)(1 e−2u)2a(k) (u)=˜b(k−1)(u) (5.15) n − − n−1 − − n−2 n holds.