1 Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics Tokyo Institute of Technology MMaattssuuzzaawwaa 2007.10.27 ASICON A. Matsuzawa && OOkkaaddaa LLaabb.. Contents 2 • Introduction • Technology scaling and performance of pipelined ADCs – Performance model of pipelined ADC • Design challenge of high speed ADCs – Pipelined ADCs • Optimization of OpAmp • Comparator controlled Current source in stead of OpAmp – Sub-ranging ADC – Successive approximation ADCs – Delta-sigma ADC MMaattssuuzzaawwaa 2007.10.27 ASICON A. Matsuzawa && OOkkaaddaa LLaabb.. Speed and power 3 Conversion speed has saturated at 200 MHz Smaller mW/MHz is needed for low power operation. 0.3mW/MHz for 10bit and 1mW/MHz for 12bit are the bottom lines. High Speed ADC [Sampling Freq. VS Power] JSSC,ISSCC,VLSI 10000 ,CICC,ESSCC 12b 10b & Products (≧10Bit,≧ 10MSps) 1000 1995-2006 12bit :1mW /MHz ] W 10bit :0.3mW /MHz m [ 100 r e w o P 12Bit(Paper) 10 200MHz 10Bit(Paper) 12Bit Products ISSCC 2007 10Bit Products. 1 1 10 100 1000 10000 Sampling Freq.[MSps] MMaattssuuzzaawwaa 2007.10.27 ASICON A. Matsuzawa && OOkkaaddaa LLaabb.. Pipelined ADC 4 Folding I/O characteristics makes higher resolution along with pipeline stages. Hold Sample Amplify Transfer characteristics 1st Stage 2nd Stage Sample Sample 1st stage Amp. Amp. +V +V ref ref -V +V -V +V ref ref ref ref 0 1 0 1 0 1 Amp. Amp. 2nd Stage Sample Sample X2 -V X2 -V ref ref MMaattssuuzzaawwaa 2007.10.27 ASICON A. Matsuzawa && OOkkaaddaa LLaabb.. Technology scaling for analog 5 Technology scaling can reduce parasitic capacitances. However signal capacitance will increase to keep the same SNR at lower voltage operation. (cid:1)(cid:1)(cid:1)(cid:1) Parasitic capacitance smaller (cid:1)(cid:1)(cid:1)(cid:1) Signal capacitance larger (cid:1)(cid:1)(cid:1)(cid:1) Operating voltage lower (cid:1)(cid:1)(cid:1)(cid:1) Voltage gain lower (cid:1)(cid:1)(cid:1)(cid:1) Signal swing lower V :l arge Vdd sig Technology Vdd V : small M5 M5 sig scaling Vbp1 Vbp1 Vbp1 Vbp1 Signal Vbp2 Vbp2 Signal Cap. Cap. Voutp Voutn Voutp Voutn Vinn Vinp Vbn2 Vinn Vinp Vbn2 Parasitic Parasitic Cap. Cap. Parasitic Parasitic Vbn1 Vbn1 Parasitic Cap. Cap. Cap. Parasitic Cap. MMaattssuuzzaawwaa 2007.10.27 ASICON A. Matsuzawa && OOkkaaddaa LLaabb.. Performance model for pipelined ADC 6 We have developed the performance model for pipeline ADC that can treat technology scaling. Cf A. Matsuzawa, “Analog IC Technologies for Future OpAmp Wireless Systems,”IEICE, Tan on Electronics, Vol. E89- C, No.4, pp. 446-454, April, 2006. 1 g s GBW = m β 1+ _close 2πC ω Cs C C R C L gm p2 pi po L OL C β= f C +C +C f s pi ( ) g :Transconductanceofinputstage C C +C m f s pi C ,C :Signalcapacitance for feedbackloop C = C +C + s f L po oL C +C +C C ,C :input& putput paraciticcapacitance f s pi pi po C :Loadcapacitance C +C oL R :Outputresistance C = s f C = C = C = C L oL o s f oL 2 ω :Second poleof OpAmp p2 g 1 I 1 GBW = m = ds _close 2πC C C C πC V α I α I α I o 2+ pi 1+ po +1+ pi o eff 2+ pi ds 1+ po ds +1+ pi ds C C C C C C o o o o o o MMaattssuuzzaawwaa 2007.10.27 ASICON A. Matsuzawa && OOkkaaddaa LLaabb.. Scaling and analog device and circuit parameters 7 D I ds Gate width and capacitances decrease with technology scaling. C C gd db (a)W ,W [μm/mA],V , V [V] G N P A_N A_P B V =0.175V C C eff DR gs sb 2L W = I C μC V 2 ds db ox eff S 1000 C ] z gs H G W ] (b)C , C C [fF/mA],ω ,ω [GHz] [ A 100 pi_N pi_P, po p2_N p2_P T f m C A], m/ gd DR m μ / F [ f W [ 10 . p a f C T 1/S2 S: Scaling factor 1 0.1 0.2 0.3 0.4 0.5 L[μm] MMaattssuuzzaawwaa 2007.10.27 ASICON A. Matsuzawa && OOkkaaddaa LLaabb.. Determination of signal capacitance 8 Larger resolution requires larger signal capacitance. Furthermore, Voltage lowering increases signal capacitance more. 2 2N C ≥ 1.66 ×10−19 V dd o V sig 2V eff 1000 Output 14bit signal 100 v Gain v V V out out- range Boost in+ in- + amp. Vdd-4Veff 10 12bit ] F p [ 1 o 10bit C 2V 0.1 eff 8bit 0.01 9900nnmm 00..1133μμμμμμμμmm 00..1188μμμμμμμμmm 00..2255μμμμμμμμmm 00..3355μμμμμμμμmm 0.001 VV 11..22VV 11..55VV 11..88VV 22..55VV 33..33VV 0.05 0.1 0.5 dddd VV 11..00VV 11..66VV 22..22VV 33..66VV 55..22VV DR[μm] ssiigg__pppp MMaattssuuzzaawwaa 2007.10.27 ASICON A. Matsuzawa && OOkkaaddaa LLaabb.. Performance curve 9 Performance exhibits convex curve. There is the peak conversion frequency and the optimum current. Current increase results in increase of parasitic capacitances and decrease of conversion frequency in the higher current region. I 1 GBW = ds _close πC V α I α I α I o eff 2+ pi ds 1+ po ds + 1+ pi ds C C C o o o 10000C = 50fF ② o ①C ≫C ,C o po pi ③ I 1 ① GBW ≈ ds ・ ( ∝ I ) _close πC V 3 ds o eff 1000 ②C <C <C ] pi o po z H M 1 1 [ GBW ≈ ・ (Constant) fc _close πC V 3+α o eff o 100 ③C <C 、C <C o po o pi 1 1 1 10 GBW ≈ ・ ( ∝ ) 0.01 0.1 1 10 _close πC V 3 +αα I I o eff i o ds ds Ids[mA] 90nm 0.13μm 0.18μm 0.25μm 0.35μm MMaattssuuzzaawwaa 2007.10.27 ASICON A. Matsuzawa && OOkkaaddaa LLaabb.. Performance summary 10 Scaled CMOS is effective for just low resolution ADC. Scaled CMOS is not effective for high resolution ADC. 10000 10000 1000 1000 ] ] z z H H M 100 M 100 [ [ c c f f 10 10 8bit 10bit 1 1 0.01 0.1 1 10 0.01 0.1 1 10 Ids[mA] Ids[mA] 90nm 0.13μm 0.18μm 0.25μm 0.35μm 90nm 0.13μm 0.18μm 0.25μm 0.35μm 1000 100 100 10 z] z] MH 10 MH 1 c[ c[ f f 1 0.1 1122bbitit 14bit 0.1 0.01 0.01 0.1 1 10 0.01 0.1 1 10 Ids[mA] Ids[mA] 90nm 0.13μm 0.18μm 0.25μm 0.35μm 90nm 0.13μm 0.18μm 0.25μm 0.35μm MMaattssuuzzaawwaa 2007.10.27 ASICON A. Matsuzawa && OOkkaaddaa LLaabb..
Description: