ebook img

High-resolution seismic imaging in deep sea from a joint deep-towed/OBH reflection experiment PDF

20 Pages·2017·2.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High-resolution seismic imaging in deep sea from a joint deep-towed/OBH reflection experiment

High-resolution seismic imaging in deep sea from a joint deep-towed/OBH reflection experiment: application to a Mass Transport Complex offshore Nigeria Stephan Ker, Bruno Marsset, S. Garziglia, Yves Le Gonidec, Dominique Gibert, Michel Voisset, J. Adamy To cite this version: StephanKer,BrunoMarsset,S.Garziglia,YvesLeGonidec,DominiqueGibert,etal.. High-resolution seismicimagingindeepseafromajointdeep-towed/OBHreflectionexperiment: applicationtoaMass Transport Complex offshore Nigeria. Geophysical Journal International, 2010, 182 (3), pp.1524-1542. ￿10.1111/j.1365-246X.2010.04700.x￿. ￿insu-00609554￿ HAL Id: insu-00609554 https://hal-insu.archives-ouvertes.fr/insu-00609554 Submitted on 17 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geophysical Journal International Geophys.J.Int. (2010)182,1524–1542 doi:10.1111/j.1365-246X.2010.04700.x High-resolution seismic imaging in deep sea from a joint deep-towed/OBH reflection experiment: application to a Mass Transport Complex offshore Nigeria S. Ker,1,2 B. Marsset,1 S. Garziglia,1 Y. Le Gonidec,3 D. Gibert,2 M. Voisset1 and J. Adamy4 1De´partementGe´osciencesmarines,IFREMER,France.E-mail:[email protected] 2InstitutdePhysiqueduGlobedeParis(CNRSUMR7154),4PlaceJussieu,75252ParisCedex,France 3Ge´osciencesRennes(CNRSUMR6118),Universite´Rennes1,Baˆt.15CampusdeBeaulieu,35042Rennescedex,France 4TOTAL,France Accepted2010June14.Received2010June8;inoriginalform2010January4 SUMMARY Weassessthefeasibilityofhigh-resolution seismicdepth imaging indeep water based ona new geophysical approach involving the joint use of a deep-towed seismic device (SYSIF) and ocean bottom hydrophones (OBHs). Source signature measurement enables signature deconvolution to be used to improve the vertical resolution and signal-to-noise ratio. The source signature was also used to precisely determine direct traveltimes that were inverted to relocate source and receiver positions. The very high accuracy of the positioning that was obtained enabled depth imaging and a stack of the OBH data to be performed. The determinationoftheP-wavevelocitydistributionwasrealizedbytheadaptationofaniterative focusingapproachtothespecificacquisitiongeometry.Thisinnovativeexperimentcombined withadvancedprocessingsucceededinreachinglateralandverticalresolution(2.5and1m) inaccordancewiththeobjectivesofimagingfinescalestructuresandcorrelationwithinsitu measurements. To illustrate the technological and processing advances of the approach, we present a first application performed during the ERIG3D cruise offshore Nigeria with the y g seismic data acquired over NG1, a buried Mass Transport Complex (MTC) interpreted as o ol a debris flow by conventional data. Evidence for a slide nature of a part of the MTC was m provided by the high resolution of the OBH depth images. Rigid behaviour may be inferred s ei frommovementofcoherentmaterialinsidetheMTCandthruststructuresatthebaseofthe S MTC.Furthermore,asiltlayerthatwasdisruptedduringemplacementbuthasmaintainedits I J G stratigraphicpositionsupportsashorttransportdistance. Keywords: Controlledsourceseismology;Seismictomography;Acousticproperties;Sub- marinelandslides;AtlanticOcean. 1 INTRODUCTION Geophysicalandgeologicalexplorationindeep-waterenvironmentshasattractedconsiderableresearchefforttoassessgeohazardssuchas landslides, shallow gas and gas hydrates (Kvalstad 2007). Undoubtedly, the perspectives provided by 3-D seismic imaging techniqueshaveyieldedsignificantinsightsintothelarge-scaleidentificationofsuchcomplexgeologicalfeatures(Heggland2004;Davies& Clark2006;Cartwright2007;Calve`setal.2008;Bulletal.2009).However,marinegeohazardsrequirequantitativeseismiccharacterization atsmallerscalesforcalibrationwithdetailedmeasurementsofgeotechnicalpropertiesandsamplingofthesubseabed(groundtruthing).The objectiveistoachieveseismicimageryconsistentwiththeaccuracyofinsitumeasurements,thatis,high-resolutionseismicinvestigationat frequencieshigherthan200Hz,withconsistentspatialsampling.Performinghigh-resolutionimagingindeepwater(500–6000m)encounters technological,physicalandmethodologicalissues,particularlywhendealingwithshallowsedimentlayersinthefirsthundredmetresbelow theseabed(Woodetal.2003). High-resolution seismic imaging of shallow sediments in deep-sea environments cannot be achieved with conventional near-surface seismicsystemsbecauseoftheoreticalandphysicallimitations.Thefirstlimitationistechnological.Thesourcehastobesufficientlypowerful toovercometransmissionlossinthegreaterwaterdepth:thesphericaldivergenceoftheacousticwaveinawaterdepthof1000mimplies alossof33dBoftheeffectivesourcelevel.Forconventionalsourceswithafrequencycontentsufficientlyhighforhigh-resolutionimaging 1524 (cid:2)C 2010TheAuthors Journalcompilation(cid:2)C 2010RAS High-resolutionseismicimagingindeepsea 1525 such as mini air-gun, piezoelectric transducer or sparker, the source level lies in the range 190–220 dB ref. 1 μPa at 1 m and to avoid destructivecavitation,itcannotbeincreased.Thesecondlimitationconcernsvelocityanalysis,theaccuracyofwhichincreaseswiththerange ofreflectionanglesoroffsets.Itispossibletoincreasethisrangeofanglesbyreducingthedistancebetweenthesourceandthereflectoras withadeep-towsystem,orbyincreasingtheacquisitionstreamerlength,astypicallyachievedwithanear-surfacesystem.Thethirdl(cid:2)imitation isoneofhorizontalresolution,controlledbytheradiusofthefirstFresnelzoneonthesurfaceinsonifiedbytheacousticwave,R= (hλ)/2 atnormalincidencewhereλisthewavelengthofthemonochromaticwaveandhisthereflectordepth.Forexample,forawaterdepthh= 1000m, R (cid:3)40mwhenusinga500-Hzsurfaceseismicdevice.Thelateralresolutioncanbereduceddowntothemeansignalwavelength λ(cid:3)3musingmultichannelseismicacquisitionwithmigrationtechniques(Claerbout1985;Scales1997).Limitedstreamerlength,however, does not usually allow the required precision in velocity determination to perform sufficiently accurate imaging for this resolution to be achieved. To overcome these limitations in high-resolution seismic imaging in deep water, one has to use (1) seismic sources/receivers with frequency bandwidths consistent with the scale of in situ measurements and (2) multichannel acquisition and processing techniques to increaselateralresolution.Hybridsystemsbasedonaconventionalsourceattheseasurfaceandreceiversclosetotheseafloor,forexample, thoseofBowen(1984)andNouze´ etal.(1997),haveshownimprovementsinthespatialresolutionbutthisapproachisnotappropriatefor accuratevelocityanalysis.Abettersolutionisafulldeep-toweddevicewheretheentiresystem,boththesourceandthereceivers,operates close to the seafloor (Fagot 1983), simultaneously providing vertical resolution improvements and better penetration into the sediment. Thefirstfulldeep-towedsystem,calledtheDTAGSforDeepTowedAcousticsandGeophysicsSystem,wasdevelopedbytheU.S.Naval ResearchLaboratory(Gettrustetal.1991).ThefirstversionoftheDTAGShadtworeceiverarraysof24channels(respectively,2.1and 21mgroupspacing)andasolid-stateHelmholtzresonatorsourcethatemittedsignalsinthefrequencyrange(250–650Hz)(Wood&Gettrust 2001;Chapmanetal.2002).IFREMER(FrenchResearchInstituteforExploitationoftheSea)hasdevelopeditsowndeep-towedseismic system,calledSYSIF(Syste`meSismiqueFond),thelatestversionofwhichhastwoacousticsourcesoperatinginthefrequencyranges(220– 1050Hz)and(580–2200Hz),respectively.SYSIFisthereforeabletorecordthesignalsreflectedfromsedimentlayersovertworesolution scales,but,todate,doesnothaveamultichannelcapability(Keretal.2008;Marssetetal.2010). DuringtheERIG3Dcruise(2008)ongeohazardsintheeasternNigerDelta,wedeterminedthesubseabedP-wavevelocityfield,avoiding theacquisitioncomplexityofdeep-towedstreamergeometry,bydeployingocean-bottomhydrophones(OBHs)ontheseaflooratadepthof 800mandtowingaseismicsource150mabovethem.Thisconfigurationeliminatedtheproblemofcontinualchangesintherelativepositions oftheshotandreceivercausedbythereceiver’smotion,simplifyingtheproblemtothatofthegeophysicalissueofdepthimaging.Aspart ofacollaborationprojectbetweenIFREMERandtheFrenchoilcompanyTOTAL,thesurveywastoassessthefeasibilityofthisapproach and its value for the characterization of a large-scale buried Mass Transport Complex (MTC), initially identified in 3-D seismic data. In Section2ofthispaperdedicatedtotheintroductionoftheERIG3Dexperiments,wepresentthegeologicalcontextbasedonexistingdata,(i.e. seismicdataandinsitumeasurements)andtheothergeophysicalsystemsusedduringthecruise.Section3coversthejointdeep-towed/OBH experimentperformedduringthecruisetoinvestigatetheburiedMTC.Section4dealswiththeprocessingsequenceofthestreamerandOBH data,includingnavigation,signalprocessingandvelocityanalysis.Theacquisitiongeometryandtheimprovementsintheseprocessespermit depthimagingoftheOBHdatathroughaniterativefocusingapproachdescribedinSection5.InSection6,theresolutionprovidedbythe differentgeophysicaldevices[hull-mountedsub-bottomprofiler,AutonomousUnderwaterVehicle(AUV)sub-bottomprofiler,deep-towed systemandOBH]iscomparedandthedata,combinedwiththatobtainedbythejointdeep-towed/OBHexperiment,areusedtostudythe buriedMTC.TheseOBHdatainterpretedinconjunctionwithsedimentologicalandgeotechnicaldataprovidenewinsightsintotheMTC; evidenceofashorttransportdistanceandrigidbehaviourmayindicateaslidenatureofapartoftheMTC. 2 THE ERIG3D EXPERIMENTS 2.1 Geologicalbackground TheNigerDeltaisa10–12-kmthicksedimentwedgethathasprogradedontotheAfricancontinentalmarginandadjacentoceaniccrust sincetheearlyTertiary(Evamyetal.1978;Haacketal.2000).GravityslidingassociatedwithdifferentialloadingofearlytomiddleTertiary marineshalesbytheprogradingdeltahasamajorimpactonitsstructuralstyleandevolution(Knox&Omatsola1989;Hooperetal.2002; Morley2003;McClayetal.2003;Corredoretal.2005).Thedifferentialloadassociatedwithunevendeltaicsedimentationisthoughtto havegeneratedoverpressureinmarineshalesandsubsequentdevelopmentofmultipledetachmentlevelslinkingupdipextension,downdip contraction and compensating translation of the intervening overburden (Morley 2003; McClay et al. 2003; Corredor et al. 2005; Briggs etal.2006).Extendingover(cid:3)200km2 fromtheshelfedge/upperslope((cid:3)200mbsl)tothemid-slope((cid:3)700–900mbsl)theMTCnamed NG1liesbetweentheextensionalandtranslationaldomainoftheeasternNigerDelta(Garzigliaetal.2010).Extensionontheupperslope isaccommodatedbynormalgrowthfaultsaffectingtheproximalpartofNG1.Itsdistalpartrestsontheflankofaprominentdome-shaped bathymetrichighformedbyashale-coredanticlinewhoserelativelyrecentactivityismanifestedbycollapsenormalfaultsdiscernibleonthe seabed(Fig.1).ThethicknessofthesedimentoverlyingNG1isupto120montheupperslopeanddecreasesprogressivelyto(cid:3)15–30mat mid-slope,in800mwaterdepth,wherethisstudyfocuses. (cid:2)C 2010TheAuthors,GJI,182,1524–1542 Journalcompilation(cid:2)C 2010RAS 1526 S.Keretal. Figure1. (a)SeabeddipmapshowingingreythearealextensionofthedistalpartofNG1.Locationoftheseismicdata,coresandinsitumeasurements collectedduringtheERIG3Dcruise.(b)Close-upofthelocationmapshowingthedatausedinthisstudy. 2.2 Seismicandinsitumeasurements Theoverallgeologicalsettinghasbeenintensivelyinvestigatedforoilprospecting.3-Dseismicsurveysaswellasexplorationandgeotechnical boreholeshavebeendrilledprovidingdetailedregionalconstraints.A3-DseismicvolumewascourteouslyprovidedbyTOTALforthisstudy. Thisconventional3-DdatasethasbeenreprocessedbyTOTALtoenhancetheresolutionoftheupperpartofthevolume.Theprocessing sequenceincludedshort-offsetalgorithmsandpre-stacktimemigrationwithinlineandcrosslinespacingof6.25and12.5m,respectively, andthefinalverticalandhorizontalresolutions,7and25m.The3-Ddatasetprovidesthelarge-scaleimagingoftheMTCusedinthisstudy toevaluatethehigh-resolutionimagingmethoddevelopedinthispaper. OneoftheobjectivesoftheERIG3Dproject,wastofocusonsmall-scaleinvestigationoftheMTC.Duringthecruise,ontheFrench R/VPourquoiPas?,asuiteofgeophysicalinstrumentsweredeployed,including: (i) Twosub-bottomprofilers(SBP):one,aconventionalhull-mountedSBPandtheotheraSBPmountedonanAUV.Bothsub-bottom profilersoperateatthesamefrequencyrange(1800–5000Hz),givingaverticalresolutioncloseto20cm.Theirlateralresolutionisconstrained bythewaterdepthbelowtheinstrument.WhereastheAUVwasdeployedattheconstantaltitude(abovetheseafloor)of80m,givingalateral resolutionof5m,thewaterdepthof800mrestrictedthelateralresolutionofthehull-mountedSBPto15m. (ii) TheSYSIFdeep-towedseismicdevice:thelowerfrequencyrangesoftheseacousticsources(220–1050Hzand580–2200Hz)allowed seismicimagesofthesub-bottomtobeacquiredwithametricresolution.However,thelowerfrequencybandwidthofSYSIFcomparedto SBP,allowsdeeperpenetrationinthesubstrata. (iii) Anoriginalhigh-resolutionseismicapproachinvolvingboththeSYSIFdevice(220–1050Hz)andOBHs:theaimofthisexperiment istoprovidethemulti-offsetrecordingrequiredforvelocityanalysisanddepthimagingalgorithms.Itconstitutesthecentralsubjectofthis paperandisthereforedescribedindetailinthefollowingsections,frombothatechnologicalandscientificpointofview. InsitumeasurementscollectedduringtheERIG3Dcruisewereusedtogroundtruththegeophysicaldata.Inaddition,thisstudyuses lithologicalandbulkdensitylogsdeterminedfromtheanalysisofcoresectionsofa60-mdeepboreholecourteouslyprovidedbyTOTAL. Bulkdensitiesweredeterminedfrommeasurementsofmassandvolumeofrandomlysampledsediments.Insitumeasurementsincluded conepenetrationtestsandP-wavevelocitymeasurements(at500MHz).Thesewerecarriedoutdownto30mbelowtheseabedusingthe PENFELDpenetrometer(Sultanetal.2007)developedbyIFREMER(seeFig.1forlocationofthemeasurements).Themethodusedto interpretsedimenttypesfromthePENFELDmeasurementsfollowedtheapproachproposedbyRamsey(2002). (cid:2)C 2010TheAuthors,GJI,182,1524–1542 Journalcompilation(cid:2)C 2010RAS High-resolutionseismicimagingindeepsea 1527 Figure2. PictureoftheSYSIFheavy-towedvehicleduringaJH250-6000deployment. 3 SYSIF DEEP-TOWED DEVICE AND OBH EXPERIMENTS 3.1 Descriptionoftheseismicdevices The SYSIF deep-towed device, designed by IFREMER and illustrated in Fig. 2, consists of a seismic source and a streamer. This heavy vehicle,weighing2.4tonsinair,istowedbythevesselwithanarmouredelectro-opticalcabledelivering1000VACpower,andbi-directional telemetryfortheseismicpayloadandsafetycontrols.Thenavigationisachievedthroughfoursystems:the120kHzaltimetermeasuresthe verticaldistancetotheseabed,thequartzpressuresensorcalculatesthedepthfromthesealevel,theminiatureattitudeandheadingreference systemmeasuresthestabilityofthevehiclewhilethe14–16kHzultra-shortbaselineprovidestherelativepositionofthevehiclethrough acousticpositioning. TheSYSIFseismicsourcehastowithstandhighhydrostaticpressure;thesolutionwastoadaptthetechnologyofaJanus–Helmholtz acoustic transducer, initially designed for low-frequency active sonars, to the needs of seismic surveying. A Janus–Helmholtz trans- ducer consists of a piezoelectric ceramic stack inserted between two similar head-masses (Le Gall 1999). This structure, called a Janus driver, is mounted inside a vented rigid cylindrical housing, providing a Helmholtz cavity. The coupling of mechanical resonance and fluid resonance permits a large frequency bandwidth greater than two octaves. With this performance, the seismic source is able to emit long-duration frequency-modulated acoustic signals, called Chirp signals, well adapted to increasing both resolution and signal- to-noise ratio using specific processing algorithms. The amplitude variations of the output signal due to the Transmitted Voltage Re- sponse of the transducer are taken into account through amplitude modulation. Based on this mature technology, two seismic sources have been designed: the JH250-6000 and the JH650-6000. The source JH250-6000 operates between 220 and 1050 Hz, and is 112 cm high,72cmdiameterandweighs450kg.TheJH650-6000forveryhigh-resolutionsurveysoperatesbetween580and2200Hz,is61cm high,45cmdiameterandweighs90kg.Theoutputlevelof196dB(ref.1μPaat1m)overthewholefrequencyrangeisachievedusinga single6.5kVAD-classpoweramplifier. TheSYSIFstreamerisadualchannelantennamadeofTUBA6000hydrophones.Thesehydrophonesarepiezoelectricceramiccylinders whosehighsensitivitytechnologyof−193dB(ref.1V/μPa)withstandshighhydrostaticpressurewithoutalossofsensitivity(1dB/600 bars). The first channel of the streamer is a single hydrophone with an offset of 10 m from the seismic source; this trace is used in the experiment to process the recorded signal amplitude. The second channel has an offset of 15 m from the source and is made up of six hydrophones,30cmapartandparallel-mountedtoincreasethesignal-to-noiseratio.Topreventsaturationfromthedirectwave,therecording usesanalogueelectronicsincludingabandpassfilterof18dBperoctaveintherange100–3000Hzanda26.3dBpre-amplifier.Analogueto digitalconversionisthenachievedat10kHzthrougha26bitanalogue-to-digitalconverter. Becausethedevicelacksmultichanneltechnologytoachievedepthimaging,OBHsweredeployedontheseafloorduringtheERIG3D cruisetorecordoffsetdata.TheOBHsareautonomousrecordinginstrumentsthatallowthedigitizationofacousticmeasurementsofthe hydrophone. Their synchronization is achieved through a GPS clock compensated for long time drift. The storage capacity of the OBH exceeds1Gbyte,whichallowsfourdaysofacquisitionusinga24-bitsigma-deltaADCat5kHZ(Auffretetal.2004;Westbrooketal.2008). (cid:2)C 2010TheAuthors,GJI,182,1524–1542 Journalcompilation(cid:2)C 2010RAS 1528 S.Keretal. Table1. GeophysicaltoolsusedduringtheERIG3Dcruiseandacquisitionparameters. Seismicdevice Frequency/duration Altitude Shootingrate Shipspeed SL Linename (Hz)/(ms) (m) (s) (Kn) (dBμPa@1m) SysifJH650-6000 [580-2200]/50 60 2.4 2 196 SY13-VHR-Pr01 SysifJH250-6000 [220-1050]/100 150 2.6 1 196 SY10-HR-Pr01 Sysif/OBH [220-1050]/100 150 2.6 1 196 SY10-HR-Pr01 Chirp(Hull) [1800-5000]/50 Surface 1 5 210 CH18 Chirp(AUV) [1800-5000]/50 80 1.3 3 190 AUV03-Pr16 3.2 Deep-towedandjointdeep-towed/OBHseismicacquisition The main objectives of the joint deep-towed/OBH experiments were to investigate the MTC NG1 both qualitatively (morphology and subsurfacestructure)andquantitatively(acousticpropertiesandP-wavevelocitiesinparticular).Toreachthesescientificobjectives,accurate positioning of both the deep-towed system in the water column and the OBH sensors on the seafloor is a critical issue for the frequency bandwidth.Thepositioningofsuchsystems,thatcanbeaccuratelycontrolledonlandorinmarinesurface-towedsurveys,stillpresentsmany difficultiesinunderwaterenvironments(Yoergeretal.2007). DuringtheERIG3Dexperiment,fiveOBHswereloweredontoaflatseaflooratawaterdepthof800m(Fig.1b).Thedeploymentwas controlledbyanacousticallynavigatedcoringwireabout10mabovetheseabedusinganultra-shortbaseline,thatis,anacoustictransponder measuringthetraveltimeofsoundbetweenthedeviceandthevessel.Thesoundvelocitythroughthewatercolumnthatisrequiredforthe timetodepthconversionwasmeasuredbyaconductivitytemperaturedensity(CTD)probeimmediatelybeforedeployment.Thenominal receiverspacingwas25mbetweentheOBHswithatheoreticalpositioningerrorof1percentofthewaterdepth,thatis,roughly8maround thenominalposition. Identically to the OBHs, SYSIF was positioned by an ultra-short baseline navigation system. However the time measurements were lessprecisebecausetheacquisitiongeometryinvolvedobliqueanglesinsteadofstraightpaths.ThedepthandthealtitudeofSYSIFwere measuredsimultaneouslybyapressuresensorandanechosounder,withrelativeprecisionof6and12cm,respectively. The shot intervals for the acquisition were calculated to avoid recording the high energy multiples related to the sea surface, that is, source ghosts and seafloor-related multiples; such artefacts are impossible to remove once acquired on the SYSIF section. Multiple removaltechniquesbasedondifferenceinmoveoutcannotbeusedhereandtechniquesbasedonthemultiple’sshape,includingpredictive deconvolution,alsofailduetotheperturbationofthewaveformafterreflectionontheroughseasurface.Weuseddynamicraytracingand computedthemultipleamplitudesandtraveltimesuptothefourthordertoadapttheshotintervaltoourspecificacquisitiongeometry. TheinvestigationoftheMTCNG1wascarriedoutusingthewholesuiteofgeophysicaltoolsavailableonboardtheR/VPourquoiPas?. Thereferencelinewasthereforesurveyedatdifferentfrequenciesthatprovidedauniquedatasetforthestudyofmarinegeohazards.The differentacquisitionparametersarepresentedinTable1.AgeologicalinterpretationofthisdatasetisproposedinSection6. 4 STREAMER AND OBH DATA PROCESSING 4.1 ProcessingoftheSYSIFnavigationfromjointOBHdata Dataacquisitionusingatowedsystemintroducesspecificvariationsinthefishpositionthattendtoincreasewiththelengthofthedeployed (unfurled) cable. Initially, the acquisition system is towed at a constant altitude to track the bathymetry of the proposed line. Using this informationthedepthofthesystemcanbecontrolledduringactualacquisitiontosmoothlyfollowthisbathymetryataconstantaltitude andavoidsuddenchangesduetoabruptvariationsintheseafloor.Othervariationsarerelatedtothetransmissionofthemotionoftheship tothedeep-towedsystemthroughthecable,andthehydrodynamicdragofthecable.Headingandlateralmotionsaffectthetrackofthe deep-towedsystembyintroducinghigh-frequencyvariationsincomparisontothesmoothprogrammedvariationsinimmersiondepth.These high-frequencyvariationsinthedeep-towednavigationappearastime-shiftsintheseismicdatameasuredonthefixedOBHs,asillustrated on Fig. 3(a) for the OBH3. These undesirable variations also affect the streamer data, as reported by Rowe & Gettrust (1993) on their DTAGSsystem.AmethodwasproposedbyWalia&Hannay(1999)toremovethis‘jitter’;theoverallmotionwasinterpretedasavertical displacementandevaluatedusingtherecordedsea-surfacereflectiontimetocorrecttheseismicdatatoaconstantdepth.Takingadvantage ofthefixedpositionoftheOBHs,weproposeamoremeticulousapproachtocorrecttheacquisitiongeometryandprocessthejitterartefact byconsideringdirectSYSIF-OBHtraveltimesintheevaluationoflateralandverticaldisplacements. RawnavigationdatafortheSYSIFcomefromanultra-shortbaselinepositioningsystem.Thesedatarelyonthedirecttraveltimesof an8–17.5kHzsignaltothetowingvessel,andareunevenlyspaced.Theaccuracyofsuchpositioningdataisgivenasapercentageofthe verticaldistancebetweenthetowedvehicleandthetowingvessel(1percent).Otherindividualsensors,thatis,thealtimeterandthepressure gauge,areusedforreal-timemonitoringofthedeep-towedvehicle;theyproduceoversampledinformation(0.5Hz).Mergingthenavigation datafromthedifferentindividualsensorsisconsequentlyapreliminaryprocessingsteptoincreasetheaccuracyinpositioning. ForamoreaccuratenavigationoftheSYSIFdeep-towedvehicle,weincludedarelocationalgorithmbasedontraveltimeinversionof theseismicsignalsrecordedattheOBHs.ThedirectarrivalsoftheOBHtracesaretimewindowedbyasinetapertoisolatethedirectarrival (cid:2)C 2010TheAuthors,GJI,182,1524–1542 Journalcompilation(cid:2)C 2010RAS High-resolutionseismicimagingindeepsea 1529 Figure3. OBH3before(left-handpanel)andafter(right-handpanel)thecorrectionofthejitterrelatedtothesourcepositionvariations. waveforms and then cross-correlated with the source signature (the measurement of the far field signature of the different transducers is describedinthenextsection).Thetimeofmaximumcross-correlationcorrespondstotheaccuratedirectarrivaltimeusedfortheinversion. WeassessthevalidityofthisapproachwithaquantitativeestimatordefinedbyPearson’scorrelationcoefficient(Taylor1982;Molyneux& Schmitt1999)expressedas (cid:3) (cid:3) (cid:3) n t=nx (t)x(t+τ)− t=nx (t) t=nx(t+τ) r(τ)= (cid:4)(cid:5) (cid:3) t=0(cid:6)(cid:3)0 (cid:7) (cid:8)(cid:5) (cid:3)t=0 0 t=0 (cid:6)(cid:3) (cid:7) (cid:8), (1) n t=nx2(t)− t=nx (t) 2 n t=nx2(t+τ)− t=nx(t+τ) 2 t=0 0 t=0 0 t=0 t=0 wherex (t)andx(t)aretwowaveformsandτ isthetimeofthecross-correlationmaximum. 0 Thisestimatorisapositiveparameterwhosemaximumvalueof1correspondstoaperfectmatchbetweenbothsignals.Wecalculated thisestimatorforalltheshotsofourexperimentandthenexpressedtheresultsasafunctionoftheincidenceanglebetweenthesourceand thereceiver(Fig.4a).DuringtheacquisitionoftheSY10-HR-PR01seismicline(Table1),theanglerangeis(−65◦,+65◦)withpositive valueswhenthesourceistotheeastofthereceiver.Fromthisresult,weobservegoodsymmetricalbehaviourofthesystemcharacterizedby constantcorrelationcoefficientsbetterthan0.9forangles−40◦to+40◦andastrongdecreasedownto0.6forhigherangles.Wecanassociate theseanglerangestothesourcedirectivityestimatedfromthepowerspectraldensityofthedirectwaveformsrecordedbyOBHs(Fig.4b). Foranglessmallerthan40◦,thetransducerdirectivityisnegligible,correspondingtotheconstantcorrelationcoefficients.Forhigherangles, variationsinthedirectivityareinaccordancewithadecreaseinthecorrelationcoefficient.Thedirectwaveformwasconsideredtoodifferent fromthesourcesignatureforacorrelationcoefficient lessthan0.7;thisvalue alsobeingatrade-offbetween anaccurate estimateofthe traveltimeandarepresentativenumberofshotstoconsiderintherelocationprocess.Thevalueof0.7correspondstoamaximumincidence angleof(cid:3)60◦oramaximumoffsetof(cid:3)250m. Therelocationprocessthenconsistsoffindingthepositionsofboththe300shotsandthefiveOBHsutilizingthesignalsthatsatisfy thecorrelationcoefficientcriterion.Theinverseproblemsearchesforthecalculateddirectarrivaltime‘tcal’whichminimizes,intheleast- squaressense,thedifferencetotheobservedtime‘tobs’.Tosolvesuchanon-linearminimizationproblem,weapplytheTrust-Regionmethod (Steihaug1983;Byrdetal.1988). The sound velocity in the water column and the immersion depth of both the SYSIF seismic source and the OBH hydrophones are assumedtobeaccurateenoughanddonotneedtobeinvertedintherelocationprocess.Therefore,therelocationprocedurefocusessolely onvariationsinpositioninalateralsense. The residuals from the inverse problem, defined as the mean values of ‘tobs − tcal’, are reported in Table 2 for each OBH. When consideringonlypreliminaryprocessednavigationdata,twostepsarefollowedtoreducethemeanresidualvaluehigherthan1ms. (i) instep1,theinitialshotpositionsarekeptconstanttoestimatetheOBHcoordinatesusingtheinverseproblem, (ii) instep2,therevisedOBHlateralpositionsarethenusedtocorrecttheseismicshotcoordinates. (cid:2)C 2010TheAuthors,GJI,182,1524–1542 Journalcompilation(cid:2)C 2010RAS 1530 S.Keretal. Figure4. (a)CorrelationcoefficientforOBHdatacalculatedwithfarfieldsignature.(b)PowerspectraldensityofthedirectwaveformforOBH3. Table2. Residuals(meanvaluesinms)obtainedaftereachstepoftherelocation procedureforthefiveOBHs. Step OBH1 OBH2 OBH3 OBH4 OBH5 Initial 1.69 2.12 1.92 0.70 1.14 Step1 0.32 0.34 0.36 0.65 0.93 Step2 0.31 0.23 0.32 0.31 0.6 Asaresult(Table2),therelocationprocessproducesaminimizationofthemeanresidualdownto(cid:3)350μs(exceptOBH5:600μs). ThefinaldisplacementoftheshotsandOBHcoordinatesiswithinaradiusoflessthan10mandisthereforeconsistentwiththeresolution oftheprimarynavigation. Thederivedlateraldisplacementswerethenappliedtotheprimarynavigationdatatoevaluatetheoriginalprocessingfromthejoint deep-towed/OBHacquisition.TheapproachconsistedoffixingadatumplanefortheSYSIFsourcedepth,computingtheassociateddirect arrivaltimes‘tnew’andthenevaluatingthedifferences‘tobs−tnew’.Thistimecorrectionisgivenbytheexpression (cid:9)(cid:10) (cid:10) (cid:13) 1 (cid:11) (cid:12) (cid:4)t = cw (xs−xr)2− xs,z=z0−xr 2 , (2) withcw thesoundvelocityinthewatercolumngivenbytheCTDprobe,xs andxr thesourceandreceiverpositions,respectively;xs,z=z0 standsforthesourcecoordinateswithaconstantimmersiondepthofz .TheresultsofapplyingthisrelocationcorrectionontheOBHtraces 0 areshowninFig.3.Theimprovedlateralcoherencyofthereflectedwavesclearlydemonstratesthevalidityoftherelocationprocedure. 4.2 Chirpsignalprocessingfromrealsourcesignature Theconventionalsignalprocessingmethodusedinmarinesub-bottomprofiling(Quinnetal.1998)istocross-correlatetherecordedtraces withatheoreticalpilotsignalorwiththedirectwaverecordedatthenearesthydrophone(Chapmanetal.2002;Heetal.2009).Theeffectis tocompressthesignalatthereflectedhorizons. Thelimitofthisapproachisbasedontheassumptionthatthepilotsignalmatchestherealoutputsourcesignal,thatis,thetransfer function of the seismic source including the power amplifier, the impedance matching unit, the transducer, etc., can be considered to be negligible, which is obviously not true.A more meticulous signal processingconsists of considering the in situfar field measurement of thesourcetoperformsignaturedeconvolution(Ziolkowski1991);thissolutionisnotstraightforwardandrequiresspecificsourcesignature measurementsatsea. To evaluate this approach, we designed and performed sea trials in 2009 May to record the far field seismic signatures of both the JH250-6000andJH650-6000transducers.Adedicatedsignaturehydrophone(HighTechHTI90hydrophone),connectedtoanautonomous analoguerecorder,wasanchoredatadistanceof12mbelowtheSYSIFdeep-towedvehicle(thevalueof12misconsistentwithfarfield signatureconstraintsasourlowerfrequencyis220Hz,i.e.6.7mwavelength).Toavoidinterferencefromechoesfromeithertheseabottom ortheseasurface,themeasurementstookplacein2000mofwaterwiththeSYSIFbeingloweredto1000mbelowthestationaryvessel. Themeasurementsunderlinedtheexcellentrepeatabilityofbothsources.Thedifferencesbetweenthefarfieldsignatureandthepilot signalareclearandreflectnotonlythetransferfunctionofthesourcesbutalsoastrongresonancefrequencyassociatedwiththeHelmholtz (cid:2)C 2010TheAuthors,GJI,182,1524–1542 Journalcompilation(cid:2)C 2010RAS High-resolutionseismicimagingindeepsea 1531 Figure5. (a)Meansourcesignaturerecordedinfarfieldcondition.(b)Powerspectraldensityofthesourcesignature. cavityat300Hz(Fig.5).Thisconfirmsthatasourcesignaturedeconvolutionapproachispreferabletoconventionalcorrelationprocessing whichwouldhaveblurredthestructuresinthefinalseismicprocessing(Brittleetal.2001). Thedeconvolutionprocedureisbasedontheconvolutionalmodelwhichstatestheseismictraceistheconvolutionbetweenthesource signatures(t)andthegeologicalreflectivityr(t).Inthepresenceofnoisen(t),theseismictraceisexpressedas x(t)=s(t)r(t)+n(t). (3) AsourcesignaturedeconvolutionisthendefinedbyadivisionintheFourierdomain(Yilmaz1987). X(ω) R(ω)S(ω) N(ω) = + , (4) S(ω) S(ω) S(ω) where X(ω) isthedeconvolvedtraceintheFourierdomainwith X(ω),S(ω),R(ω)andN(ω)aretheFourierTransformof,respectively, S(ω) thedata,thesourcesignature,thegeologicalreflectivityandtheadditivenoise.Inpractice,anoisefactorhastobeaddedtothesourcebefore thedivisiontopreventanydivisionbyzeroandtoreducetheamplificationofnoise. OBH data present excellent signal-to-noise ratio exceeding 36 dB and therefore, on this particular data set, the noise factor is not necessarytoensurethestabilityofthedivision.Thestreamerdataisalsocharacterizedbyahighsignal-to-noiseratio(27dB)whichmay berelatedtotheperformancesofthereceiver,tothe‘peaceful’deep-waterenvironmentandtothelowspeedoftheacquisition(1–2knots). Asaqualitativeresult,acomparisonbetweentheconventionalcorrelationandthesignaturedeconvolutionisshowninFig.6:thedifferences inthelower partof thesectionwhere thesignal-to-noiseratioisminimum areclear. A350–1100 Hzbandpass frequency filter has been appliedinthecorrelationsection(Fig.6a)toavoidtheHelmholtzresonancefrequencywhereasthefilterbandwidthwas200–1100Hzinthe deconvolutionsection(Fig.6b)toattenuatefrequenciesoutsidetheemittedbandwidth. As a quantitative result, we can estimate a vertical resolution of the imaging process between 0.5 and 1 m, thanks to both the large frequencybandwidthofthesourceandthesuccessfulsignaturedeconvolution.Moreover,thelowaltitudeofthedeep-towedvehicleabove theseafloor(150m)allowsagoodlateralresolution,between15mand20mdependingonthereflectordepthtobeachieved. (cid:2)C 2010TheAuthors,GJI,182,1524–1542 Journalcompilation(cid:2)C 2010RAS 1532 S.Keretal. Figure6. Left-handpanel:correlationprocessing(filter350–1100Hz).Right-handpanel:deconvolutionprocessing(filter200–1100Hz). 4.3 Analysisofthesubsurfacevelocityprofileinthetimedomain Unlikesurfaceseismicrecords,thelocusofreflectionpointsforeachsource–receiverpairinourOBHsurveychangeswithreflectordepth. In a horizontally layered medium, this locus tends towards the source–receiver midpoint with increasing depth. Therefore, the OBH data cannotbesortedintocommonmid-pointgathersandthenormalmove-outvelocityanalysishastobecarriedoutonreceivergathers.The geometryoftheacquisitionisasymmetricalduetothedifferenceinaltitudebetweenthesourceandthereceiver;thus,wehavetoredefine thetraveltimeequationofreflectedeventsandtoadapttheNMOapproachtothisparticularcase.Forthesakeofsimplicity,weconsidera strictly2-Dacquisitiongeometry(whereboththereceiverandthesourceareonthesameplane).Thereceiverislocatedontheseabedandif weassumeflatunderlyinglayers,thearrivaltimeoftheP-wavereflectedwaveattheinterfacenisthusexpressedas x2 t2≈t2 + , (5) 0,n 2 V n wheret0,nisthezerooffsetarrivaltimeoftheP-wavereflectionattheinterfacen,xisthehorizontaldistancebetweenthesourceandthe receiver(offset)andVn isthermsvelocity.t0,nandVn canbeexpressedinfunctionofvk anddk whicharerespectivelytheP-waveinterval velocityandthicknessofthek-thlayer.Thefirstlayeristhewatercolumn. ⎡ ⎤ 2 t2 =⎣(cid:16)k=n dk +(cid:16)j=n dj⎦ (6) 0,n v v k=1 k j=2 j andV thequadraticvelocityexpressedas n (cid:3) (cid:3) 1 = (cid:3) kk==n1 dvkk +(cid:3)jj==n2 dvjj . (7) V2n kk==n1vkdk+ jj==n2vjdj Thisformulationofthetraveltimeissimilartotheoneusedinoffsetverticalseismicprofileprocessingwhichsharesitsasymmetrical acquisitiongeometrywithourOBHexperiment(Dillon&Thomson1984). ToperformtheP-wavevelocityanalysis,negativeandpositiveoffsets,correspondingtoOBHpositionsontheeastandwestsideof theSYSIFseismicsourcewereconsideredseparately.ThesemblancepanelsforOBH3areshowninFig.7.AnaverageP-wavevelocityof between1480and1490ms−1wouldbeinterpretedforthesedimentarycoverlocatedinthefirst200msbelowtheseabed.Thisvalueappears (cid:2)C 2010TheAuthors,GJI,182,1524–1542 Journalcompilation(cid:2)C 2010RAS

Description:
High-resolution seismic imaging of shallow sediments in deep-sea environments cannot be achieved with conventional near-surface seismic systems and its value for the characterization of a large-scale buried Mass Transport Complex (MTC), initially identified in 3-D seismic data. In. Section 2 of th
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.