Astronomy&Astrophysicsmanuscriptno.tcha˙accepted (cid:13)c ESO2015 January27,2015 High resolution observations of the outer disk around T Cha: the view from ALMA N.Hue´lamo1,I.deGregorio-Monsalvo2,3,E.Macias4,C.Pinte5,6,M.Ireland7,P.Tuthill8,andS.Lacour9 1 CentrodeAstrobiolog´ıa(INTA-CSIC);ESACCampus,P.O.Box78,E-28691VillanuevadelaCan˜ada,Spain e-mail:[email protected] 2 JointALMAObservatory(JAO),AlonsodeCo´rdova3107,Vitacura,SantiagodeChile 3 EuropeanSouthernObservatory,GarchingbeiMu¨nchen,D-85748Germany 4 InstitutodeAstrof´ısicadeAndaluc´ıa,CSIC,GlorietadelaAstronom´ıas/n,E-18008Granada,Spain 5 5 UMI-FCA,CNRS/INSUFrance(UMI3386),andDpto.deAstronom´ıa,UniversidaddeChile,Casilla36-DSantiago,Chile 1 6 Univ.GrenobleAlpes,IPAG,38000Grenoble,France;CNRS,IPAG,38000Grenoble,France 0 7 ResearchSchoolofAstronomyandAstrophysics,AustralianNationalUniversity,CanberraACT2611,Australia 2 8 SydneyInstituteforAstronomy,SchoolofPhysics,UniversityofSydney,NSW2006,Australia n 9 LESIA,CNRSUMR-8109,ObservatoiredeParis,UPMC,Universite´ParisDiderot,5placeJulesJanssen,92195Meudon,France a J Received—,—;accepted—-,—- 6 2 ABSTRACT ] Context.Transitionaldisksarecircumstellardiskswithdustgapsthought toberelatedinsomecaseswithplanetformation.They R canshedlightontheplanetformationprocessbytheanalysisoftheirgasanddustproperties.TChaisayoungstarsurroundedbya S transitionaldiskwithsignaturesofplanetformation Aims.TheaimofthisworkistostudytheouterdiskaroundTChaandtoderiveitsmainproperties. . h Methods.Wehaveobtainedhigh-resolutionandhigh-sensitivityALMAobservationsintheCO(3–2),13CO(3–2),andCS(7–6)emis- p sionlinestorevealthespatialdistributionofthegaseousdiskaroundthestar.Inordertostudythedustwithinthediskwehavealso - obtainedcontinuumimagesat850µmfromtheline-freechannels. o Results.WehavespatiallyresolvedtheouterdiskaroundTCha.UsingtheCO(3-2)emissionwederivearadiusof∼230AU.We r t alsoreportthedetectionofthe13CO(3-2)andtheCS(7-8)molecularemissions,whichshowsmallerradiithantheCO(3-2)detection. s Thecontinuumobservationsat850µmallowthespatialresolutionofthedustydisk,whichshowstwoemissionbumpsseparatedby a ∼40AU,consistentwiththepresenceofadustgapintheinnerregionsofthedisk,andanouterradiusof∼80AU.Therefore,TCha [ issurroundedbyacompactdustydiskandalargerandmorediffusegaseousdisk,aspreviouslyobservedinotheryoungstars.The 1 continuumintensityprofilesaredifferentatbothsidesofthedisksuggestingpossibledustasymmetries.Wederiveaninclinationof v i(◦)=67±5,andapositionangleofPA(◦)=113±6,forboththegasanddustdisks.ThecomparisonoftheALMAdatawithradiative 3 transfer models shows that the gas and dust components can only be simultaneously reproduced when we include a tapered edge 8 prescriptionforthesurfacedensityprofile.ThebestmodelsuggeststhatmostofthediskmassisplacedwithinaradiusofR<50AU. 4 Finally,wederiveadynamical massfor thecentral object of M∗=1.5±0.2M⊙,comparable totheone estimatedwithevolutionary 6 modelsforanageof∼10Myr. 0 Key words. stars: pre-main sequence — stars: kinematics and dynamics — stars: individual: T Cha — protoplanetary disks — . 1 techniques:interferometry 0 5 1 1. Introduction more ’tenuous’ disk, with a very steep surface density profile. : v Both family of models suggest a very peculiar outer disk with i T Chamaeleontis (T Cha) is a young (∼7±5Myr) nearby littleornodustbeyond∼40AU.Ontheotherhand,thecoldgas X (108pc) T Tauri star in the ǫ-Cha association, surrounded intheTChaouterdiskhasbeenstudiedbySaccoetal.(2014). r by a transition disk (Alcalaetal. 1993; Brownetal. 2007; Theirspatiallyunresolvedobservationssuggestthepresenceof a Torresetal. 2008; Murphyetal. 2013). There is evidence of a agaseousdiskwithanouterradiusofR ∼80AUinKeplerian CO dustgapwithinthedisk,andayetunconfirmedsubstellarcom- rotation. panion inside the gap (see Hue´lamoetal. 2011; Olofssonetal. Overall, the disk aroundT Cha shows propertiessimilar to 2013). If confirmed,the disk aroundT Cha can give us impor- theso-called’faint’disks,characterizedbyweakmillimetercon- tantcluesaboutthephysicalconditionsforsubstellarformation tinuumemissionthatcanberesultofdifferentpropertiesorpro- atearlyevolutionaryphases. cesses(e.g.Pie´tuetal.2014).InthecaseofTChathereisevi- TChaissurroundedbyaverynarrowinnerdiskthatextends denceofdustclearing,graingrowth,andahighdiskinclination from 0.13 to 0.17AU (Olofssonetal. 2013), and an outer disk (Brownetal.2007;Pascucci&Sterzik2009). whose main properties have been inferred from the modeling Inthiswork we presenthighqualityobservationsof T Cha ofitsspectralenergydistribution(SED,e.g.Brownetal.2007). obtained with the Atacama Large Millimeter Array (ALMA), Ciezaetal.(2011)showedthatthemodelsarehighlydegenerate whichhaveallowedustospatiallyresolvetheouterdiskaround and can fit the SED of T Cha equally well either with a very T Cha for the first time. ALMA has allowed us to derive basic compactouterdustdisk(afewAUswide)oramuchlargerbut parametersoftheouterdisk,tobreakthedegeneracyofradiative 1 Hue´lamoetal.:ALMAobservationsofTCha transfermodelsbased on SED fitting, andto understandif it is sion is spatially resolved, with a radius R ∼ 170AU after 13CO peculiarincomparisonwithothercircumstellardisks. deconvolutionwiththesynthesizedbeam. The radial intensity profiles of the CO(3-2) and 13CO(3-2) transitionsaredisplayedinFigure3.Theyhavebeencomputed 2. Observations usingslicesalongthesemi-majoraxisofthedisk(dashedwhite lineinFig.1,leftpanel)inthegasemissionmaps.Wedonotsee The observations were performed on 2012 July 01, 26 and a significant difference of the profiles at both sides of the disk November03atBand7,aspartoftheALMACycle0program (NEandSW)suggestingasymmetricdistributionofthegas. 2011.0.00921.S.The field of view was ∼ 18′′. A total of three Gas emission from CS(7–6) is also spatially resolved and data sets were collected, using between 18 and 23 antennas of shows a deconvolved radius of R ∼ 100AU. The integrated CS 12m diameter and accounting for 6 hours of total integration intensity emission above 3σ is 0.54 ± 0.08 Jykms−1. To our time including overheads and calibration. Weather conditions knowledge,thisisthefirsttimethatsuchahightransitionofthe weregoodandstable,withanaverageprecipitablewatervapor CSmoleculeisspatiallyresolvedinadiskaroundalate-typestar of0.7mm.Thesystemtemperaturevariedfrom150to250K. (thefirstdetectioninaHerbigstarhasbeenrecentlyreportedby The correlator was set to four spectral windows in vanderPlasetal.2014).Sulfur-bearingmolecules(likeCSand dual polarization mode, centered at 345.796 GHz (CO(3–2)), SO )studiesarescarce(e.g.Dutreyetal.2011;Guilloteauetal. 2 342.883 GHz (CS(7–6)), 332.505 GHz (SO (4(3,1)–3(2,2))), 2 2012),butinterestingsincethesetypeofmoleculesare present and 330.588 GHz (13CO(3–2)). The effective bandwidth used in comets (e.g. Hale-Bopp; Ikedaetal. 2002, and Shoemaker- was 468.75MHz, providing a velocity resolution of ∼ 0.11 Levy/9; Matthewsetal. 2002) and their presence in the inner kms−1afterHanningsmoothing. part of the disks offers the possibility of studying the chem- The ALMA calibration includes simultaneous observations ical composition of the planet-forming regions. So far, only a ofthe183GHzwaterlinewithwatervaporradiometers,which few CS detectionsat lower frequencytransitionshave been re- measure the water column in the antenna beam, later used portedindiskssurroundingK5toM0stars(Dutreyetal.2011; to reduce the atmospheric phase noise. Amplitude calibration Kastneretal.2013).Herewe showforthefirsttimeaspatially was done using Juno and Titan, and quasars J1256−057 and resolveddetectionoftheCS(7–6)transitionaroundaK0star. J1147−6753were used to calibrate the bandpassand the com- The gas detected in the disk surrounding T Cha shows a plex gain fluctuations respectively. Data reduction was per- velocity profile consistent with a Keplerian rotation pattern, formedusing version4.1of the CommonAstronomySoftware whichcanbeseeninallthemoleculartransitionsobserved(see Applications package (CASA). We applied self-calibration us- Figure 2). CO(3–2) emission is detected at velocities between ingthecontinuumandweusedthetaskCLEANforimagingthe -5.0 to 16.5kms−1, 13CO(3–2) between -3.0 and 15.0 kms−1 self-calibratedvisibilities. The continuumimage was produced and the CS(7–6)between 0.0 to 11.0 kms−1. In Fig 4 we have bycombiningalloftheline-freechannelsusinguniformweight- representedaposition-velocitydiagramalongthemajoraxisof ing(synthesizedbeam0.52′′×0.34′′,P.A.∼29◦;rms=0.7mJy the gaseous disk traced by CO(3–2). The systemic velocity is beam−1).FortheCO(3–2)lineweusedBriggsweighting(beam 5.95±0.22 kms−1. In that plot an absorption feature at veloci- 0.64′′×0.48′′,P.A.∼31◦;rmsperchannel=9mJybeam−1),and ties near 4.7kms−1 can be seen, which is verylikely produced for the rest of the lines we used naturalweighting,providinga by a foreground molecular cloud in the same line of sight as synthesizedbeam∼0.8′′×0.6′′,P.A.∼25◦andanrmsperchan- TCha(Nehme´etal.2008).Bycomparingtheposition-velocity nelof11mJybeam−1forthe13COand7mJybeam−1fortheCS diagramwith a Keplerianvelocityprofile(Figure 4), we show andtheSO2. that the emission is compatible with Keplerian rotation around a 1.3 - 1.7 M object in a disk inclined at 67 degrees. This ⊙ mass range is in good agreementwith estimations from evolu- 3. Resultsanddiscussion tionarytracksforanageof∼10Myr(e.g.Schisanoetal.2009; Murphyetal.2013). 3.1.Molecularemissionlinedetections MolecularlineemissionisdetectedforthetransitionsCO(3–2), 3.2. Continuumemissionat850µm 13CO(3–2),andCS(7–6).Allofthemarespatiallyresolvedfor thefirsttimeforTCha.NodetectionwasfoundforSO2(4(3,1)– Continuumemissionat850µmisdetectedcenteredattheposi- 3(2,2)),witha3σupperlimitof20mJy. tionR.A.(J2000)=11h57m13s.42,Dec(J2000)=−79◦21′31′′696. Figure1showstheintegratedemissionmapsofthethreede- The flux density integrated over the disk structure above 5σ is tectedmoleculeswhileFigure2displaystheintensity-weighted S =198±4mJy. 850µm mean velocity maps. The CO(3–2) emission is spatially well Figure 1 shows the dusty outer disk around T Cha repre- resolved along the major and the minor axis. The integrated sented by black contours. The disk is spatially resolved in its intensity averaged over the whole emission area above 3σ is majoraxiswithaprojecteddiameterof1.50′′ (measuredatthe 12.46 ± 0.11 Jy kms−1, in agreement with the value reported 5σcontourlevel),whichcorrespondstoanouterdustdiskradius bySaccoetal. (2014) fromthe fitwith a Kepleriandisk model ofR ∼ 80AUafterdeconvolutionwiththesynthesizedbeam, out profileto single-dishobservations.Consideringcontoursabove andadoptingadistanceof108pc.Twolocalpeaksareobserved 3σ, the outer radius extends to 2.1” which, after deconvolu- at a projected separation of 0.37” (40 AU at 108pc), which is tion with the synthesized beam, correspondsto an outer radius closetothebeamsize,andsuggestthepresenceofagapinthe R ∼ 230AU. The inclination (i) and the position angle (PA) innerregionsofthediskaspredictedbySEDmodeling. CO of the gaseous disk have been estimated by fitting a Gaussian InFigure3wehaverepresentedthecontinuumradialinten- to the CO(3–2) integrated emission map, providing values of sity profilesatbothsidesof thedisk,togetherwith theaverage i=67±5◦andPA=113±6◦. profile, includingonly datapointsabove 5-σ. As in the case of 13CO(3–2) emission line shows an integrated intensity of the gasmolecules,theyhavebeencomputedusingslices along 4.31±0.07 Jy kms−1 (above 3σ contour). The region of emis- thesemi-majoraxisofthedisk(dashedwhitelineinFig.1,left 2 Hue´lamoetal.:ALMAobservationsofTCha Fig.1.Integratedemission mapsofthe CO(3–2),13CO(3–2),andthe CS(7–6)transitions(fromleftto right).The blackcontours represent the continuum emission at 850 µm at 5, 15, 30, 45, 60, 75, 90, and 110 σ where 1 σ is 0.7 mJy beam−1. We detect two emissionbumpsseparatedby40AU andanouterdustradiusof79AU. Thewhiteellipsesarethe synthesizedbeamsforthe spectralemissionlinesandthegreenellipseisthesynthesizedbeamforthecontinuummap.Thewhitedashedlineintheleftpanel representstheaxiswheretheposition-velocitydiagraminFigure4hasbeenobtained. Fig.2.Intensity-weightedmeanvelocitymaps(first-ordermoment,2σcutforCO(3–2)and13CO(3–2),and1.5σcutforCS(7–6)). panel) in the continuum emission maps. We can see a signifi- face density profile (with an exponentof α ≤ –2, for a power- cantdifferencebetweentheprofilesatbothsides,withtheNW lawprescription).Thelargedegeneracybetweenthesetwodisk sidebeingslightlylargerthantheSE one,suggestingasymme- parameters, R and α, did not allow them to choose between out trieswithinthedustydisk.Finally,theiand PA valuesthatwe thesetwoscenarios.Olofssonetal.(2013)usedMCFOSTtofit derive using the continuum emission at 850 µm are similar to the SED togetherwith near-IRinterferometricdata.Theyfixed thoseestimatedwiththeCO(3–2)observations. R =25AU,andα=-1,andfoundabestfitmodelwithanarrow out dustouterdisk(R =12±2AU). in OurALMAdatashowsthatmodelswithapower-lawsurface 3.3.Comparisonwithradiativetransfermodels density,liketheonesusedinthesetwoworks,cannotreproduce Our ALMA observations reveal that T Cha is surrounded by boththeCOandcontinuumdata.Weneverthelessfirstconsider a compact dusty disk with a sharp outer edge at ∼80AU and thistypeofmodelstodiscusstheALMAdatainthecontextof a larger gaseous disk with an outer radius of ∼230AU. This previousresults. trend, a compact dust disk with a larger and more diffuse We have modeled the SED of T Cha with MCFOST, be- gaseous disk, has already been observed in a significant num- ing the starting point the model grid presented by Ciezaetal. ber of circumstellar disks (e.g. Isellaetal. 2007; Hughesetal. (2011)andrefinedbyOlofssonetal.(2013).Basically,thedisk 2008; Andrewsetal. 2012; deGregorio-Monsalvoetal. 2013; is composed of 2 sub-disks: an inner and an outer disk with a Pie´tuetal.2014). density structure defined by a power law surface density pro- Ciezaetal.(2011)usedtheradiativetransfercodeMCFOST file with exponent α, Σ(r) = Σ (r/r )α, and a scale height of 0 0 (Pinteetal. 2006, 2009) to model the SED of T Cha. They h(r) = h (r/r )β, with β being the disk flaring index, and h 0 0 0 showedthattherearetwofamiliesofdustdiskmodelsthatcan thescaleheightatareferenceradiusr =50AU.Eachdiskex- 0 reproduce equally well the SED: very small disks (a few AUs tendsfromaninnerradius,R toanouterradius,R .Thegrain in out width)ormuchlarger(R ∼300AU)butwithaverysteepsur- size distribution in each disk is defined by dn(a) ∝ apda, be- out 3 Hue´lamoetal.:ALMAobservationsofTCha 0.10 CO(3−2) m Intensity (Jy/beam)0.01 SE850 NNμWWm 0.01 SE 850 μm (NZWOOM) Continuu ttarupnecraetde-de dpgoewer law 10 100 100 m) radius (AU) m) radius (AU) m/s/bea CO (3-2) m/s/bea 13 CO(3-2) Integrated Line Intensity (Jy.k01..10 10 radius (AU) 100 Integrated Line Intensity (Jy.k01..10 10 radius (AU) 100 10-12 Fig.4.Position-velocitydiagramalongthediskmajoraxis(see 10-14 exactaxisrepresentedinFig1leftpanel).Thedotted,solid,and 2m) W / dashedblackcurvesrepresentthebestfits tothe data,thatcor- λ . F (λ10-16 orefs5p.o9n5dktmo as−K1,eapnleirnicalninvaetilooncitoyfip(r◦o)fi=le67fo,ranadsayscteenmtriaclvmealoscsiotyf 10-18 1.3,1.5,and1.7M ,respectively. ⊙ 10-20 1 10 100 1000 10000 λ (μm) Fig.3.Topandmiddlepanels:Continuumandgasradialinten- observationaldatasetdisplayedinthatwork.Theadoptedstellar sity profiles. The blue (SE) and red (NW) data points are the parametersareTeff=5400K,Av=1.5,andd=108pc(Torresetal. ALMA data(over5-σ) atbothsidesof thedisk. Inthe case of 2008;Schisanoetal.2009).Thebestdiskmodel,thatis,theone thecontinuumwehavealsoincludedtheaverageprofile(green withtheminimumχ2,providesparametersofα=-2.5,β=1.07, data).Thesolidblacklinesshowthebestmodelusingatapered h0@50AU=6AU, Rin = 19AU, amax = 1000, and a disk dust edgeprescriptionforthesurfacedensity,whilethedashedlines massofMdust∼1×10−5M⊙. show the best model using a truncated power law. The upper SinceSEDmodelingishighlydegenerate,thebest-fitmodel panelsshowthe continuumdata,includinga zoomoftheouter isunlikelytobeauniquesolution.Therefore,wehaveperformed regions,whilethemiddlepanelsincludetheCOprofiles.Bottom aBayesiananalysistoestimatethevalidityrangeforeachofthe panel:theobservedSEDandthefitfromthetaperededgemodel explored parameters (Pressetal. 1992; Pinteetal. 2007). The presentedhere. result is displayed in Figure 5, where we show the Bayesian probabilitydistributionsforthedifferentdiskparameters.While M ,R andh seemwellconstrained,thisisnotthecaseforα: dust in 0 itshowsalocalpeakatα=−2.5butarelativelyflatdistribution. tween a and a . The temperature structure in the disk is min max Weconcludethat,evenfixingR ,αremainsunconstrainedby calculatedbyconsideringthedustopacityonly.Thedustprop- out theSEDmodeling. erties are computedassuming the Mie theory.Finally, the total dustmassinthedisk(includingallgrainsizes)isrepresentedby With ourALMA observationswe havepartially brokenthe Mdust. (α,Rout)degeneracycommonlyencounteredwithSEDfittingby TocalculatetheCOchannelmapsandsurfacebrightnessdis- measuringRout.Theresolutionreachedbyourobservationsdoes tribution, we assume a constant gas-to-dust mass ratio of 100 notallow us to constrainaccuratelythe surface density profile. throughout the disk (both radially and vertically). We adopted ButwithRin ∼20AUandadiskwidthof∼60AU,weexclude a standard CO abundance with respect to H (10−4), set con- surface density profile shallower than -1. According to the ob- 2 stantthroughthediskwhereTdust>20Kandequaltozerowhere servedRout,wecanalsodiscardthefamilyofmodelswithvery T <20KtomimictheeffectofCOfreezeout.The12CO/13CO narrow dusty rings, and the extreme case of a very large disk dust ratioissetto76.Thelevelpopulationsarecalculatedassuming (Rout∼300AU)withα∼-3. T =T ateachpointinthedisk.Theradialandverticaltem- Ifwe take the gasemission intoaccount,themodelfails to gas dust peratureprofilesandtheradiationfieldestimatedbytheMonte fit simultaneously the gas and dust profiles (see Figure 3), as Carlo simulationare used to calculatelevelpopulationsfor the alreadyobservedin other spatially resolvedcircumstellardisks CO molecule and to producethe SED, continuumimages, and (e.g.Hughesetal. 2008).Asdiscussedbytheauthors,a power line emission surface brightnessprofiles, as well as kinematics law density profile cannotreproducethe different extentof the witharay-tracingmethod.Thekinematicsarecalculatedassum- gas and dust emission observed in circumstellar disks while ingthediskisinpureKeplerianrotation. a tapered edge model, in which the surface density falls off We have adopted the inner disk parameters from gradually, can in principle reconcile the observed profiles. We Olofssonetal. (2013). For the outer disk, we have fixed have therefore run the MCFOST code, but using a tapered ex- two parameters obtained from the ALMA data, R and i, se- ponential edge in the surface density distribution. In this case, out lectingthegridvaluesclosertotheALMAmeasurments(80AU the density profile is represented by a function defined by the and 68◦, respectively). We have explored Rin, β, h◦@50AU, characteristicradius,Rc (theradiusoutofwhichthebrightness a , α, and M , using the same parameter range shown drops towards zero) and γ, the surface density index: Σ(r) = max dust in Ciezaetal. (2011). For the SED, we have fitted the same Σ0(r/r0)−γexp(cid:16)−(r/r0)2−γ(cid:17). 4 Hue´lamoetal.:ALMAobservationsofTCha CS(7–8). Using the CO(3-2) image we derive an outer ra- 0.4 0.4 0.6 0.5 diusofR ∼230AU,aninclinationofi(◦)=67±5,anda 0.3 0.3 gas,out Probability00..12 00..12 000...234 aproesistiiomnilaanrgalteboofthPAsi(d◦)es=o1f13th±e6.dTishkeilninteheinCteOnsimtyolpercoufilleess, 0.1 consistentwithauniformdistributionofthegas. 0.0 0.0 0.0 100 1000 10000 -2.5 -1.5 -0.5 10-6 10-5 10-4 10-3 – The disk around T Cha is in Keplerian rotation, and amax [µm] α Mdisk [MO • ] the estimated dynamical mass of the central object, 1.0 0.4 1.0 M∗=1.5±0.2M⊙, is in good agreement with previous esti- Probability0000....2468 000...123 0000....2468 – mTadtihas8ekti5.od0Tnuµshsmetbyacsaodennidsdtkioninutisuesmhvreooswilnuosttleivoanensdsaitiriymynpitltrrahaorecfikilcseao.ndnditsipnPluaAuymstotwotbhoseeergmvaaisstesiooiounnss 0.0 0.0 0.0 4 5 6 7 8 10 100 bumps separated by 40AU, suggesting the presence of an ho@50AU [AU] Rin [AU] Rout [AU] innerdustgapaspredictedbySEDmodeling,andan outer Fig.5.Bayesianprobabilitydistributionsofthediskparameters radiusof∼80AU.Theprofilesaredifferentatbothsidesof of T Cha. The blue lines show the results without fixing any thedisk,whichpointstowardsasymmetriesinthe dustdis- parameter, while the red lines show the results after fixing the tribution.Thesedataallowsustoruleoutboththeverysmall outerdiskradiusandthediskinclination. andlargeR familiesofSEDmodels. out – Radiative transfer models including a truncated power law prescriptionforthesurfacedensityprofilecannotreproduce Forthismodel,wehavealsoadoptedtheinnerdiskparame- simultaneously the gas and dust profiles. We can fit both tersfromOlofssonetal.(2013),andvariedonlytheprescription componentssimultaneouslyusingatapered-edgemodelpre- fortheouterdisk.Wehavefixedthediskinclinationto68◦,the scription for the surface density. The best model provides dustmasstoMdust=9×10−5M⊙(deGregorio-Monsalvoetal.,in values of γ= 0.5, and R = 50AU, which is consistent with c prep.),andwehaveexploredtherestofthediskparameters:we havingmostofthediskmasswithintheinner50AU. havesampledarangeofγvaluesbetween0and2,R between c 40 and 100AU, Rin between 12 and 30AU, the scale heightat Acknowledgements. This paper makes use of the following ALMA data: 50AU(h @50AU)between3and6AU,andtheflaringindex,β, ADS/JAO.ALMA#2011.0.00921.S.ALMAisapartnershipofESO(represent- 0 between1.0and1.1.Finally,totakeintoaccountthedifference ing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic in brightness between both sides of the disk in the continuum, ofChile. TheJointALMAObservatory isoperated byESO,AUI/NRAOand weexploremodelsthatpassbetweenthetwoobservedprofiles. NAOJ.TheNRAOisafacilityoftheNationalScienceFoundationoperatedun- The resultis displayedin Figure3 where we show the best der cooperative agreement by Associated Universities, Inc. This research has modelthatcanfitsimultaneouslythetwodiskcomponentsand beenfundedbySpanishgrantsAYA2010-21161-C02-02andAYA2012-38897- theobservedSED.Themodelshowsγ=0.5andR =50AUfor C02-01.IdGandEMacknowledge supportfromMICINN(Spain)AYA2011- c 30228-C03grant(includingFEDERfunds). boththegasandthedust.Wealsoderivetheseparameters:R = in 20AU, h @50AU = 4AU, and β = 1.0. This model is consis- 0 tentwithhavingthegasandthedustwellmixedandmainlylo- References catedataradiussmallerthan50AU,assuggestedbyCiezaetal. Alcala,J.M.,Covino,E.,Franchini,M.,etal.1993,A&A,272,225 (2011) based on the steep drop of the SED at sub-mm wave- Andrews,S.M.,Wilner,D.J.,Hughes,A.M.,etal.2012,ApJ,744,162 lengths. Brown,J.M.,Blake,G.A.,Dullemond,C.P.,etal.2007,ApJ,664,L107 Figure3showsthatourbestmodeldoesnotperfectlyfitthe Cieza,L.A.,Olofsson,J.,Harvey,P.M.,etal.2011,ApJ,741,L25 CO line profiles, which can be related either with the underly- deGregorio-Monsalvo,I.,Me´nard,F.,Dent,W.,etal.2013,A&A,557,A133 Dutrey,A.,Wakelam,V.,Boehler,Y.,etal.2011,A&A,535,A104 ing chemistry (we assumed ISM abundances and very simple Guilloteau,S.,Dutrey,A.,Wakelam,V.,etal.2012,A&A,548,A70 COfreeze-out)orwiththemodelprescriptions.Infact,tapered- Hue´lamo,N.,Lacour,S.,Tuthill,P.,etal.2011,A&A,528,L7 edgemodelssometimesfailtoreproducesimultaneouslytheob- Hughes,A.M.,Wilner,D.J.,Qi,C.,&Hogerheijde,M.R.2008,ApJ,678,1119 serveddustandgasprofilesobtainedfromveryhighspatialres- Ikeda,M.,Kawaguchi,K.,Takakuwa,S.,etal.2002,A&A,390,363 olution and sensitivity observations (see Andrewsetal. 2012; Isella,A.,Testi,L.,Natta,A.,etal.2007,A&A,469,213 Kastner,J.,Punzi,K.,Rodriguez,D.,etal.2013,inProtostarsandPlanetsVI deGregorio-Monsalvoetal.2013),andsuggeststhatotherpro- Posters,22 cesseslikee.g.graingrowthandradialmigrationshouldbetaken Matthews,H.E.,Marten,A.,Moreno,R.,&Owen,T.2002,ApJ,580,598 intoaccount.Giventhatthediskisbarelyresolvedinourobser- Murphy,S.J.,Lawson,W.A.,&Bessell,M.S.2013,MNRAS,435,1325 vations,weexpectfuture,higherspatialresolutionobservations Nehme´,C.,Gry,C.,Boulanger,F.,etal.2008,A&A,483,471 Olofsson,J.,Benisty,M.,LeBouquin,J.-B.,etal.2013,A&A,552,A4 toprovidestrongerconstraintsontherelativelocationofthegas Pascucci,I.&Sterzik,M.2009,ApJ,702,724 anddust,andthedeparturefrompoint-symmetry. Pie´tu,V.,Guilloteau, S.,DiFolco,E.,Dutrey,A.,&Boehler, Y.2014,A&A, 564,A95 Pinte,C.,Fouchet,L.,Me´nard,F.,Gonzalez,J.-F.,&Ducheˆne,G.2007,A&A, 4. Conclusions 469,963 Pinte,C.,Harries,T.J.,Min,M.,etal.2009,A&A,498,967 HighspatialresolutionandhighsensitivityALMAobservations Pinte,C.,Me´nard,F.,Ducheˆne,G.,&Bastien,P.2006,A&A,459,797 have allowed us to spatially resolve the outer disk around the Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical recipes in FORTRAN. The art of scientific computing young and isolated object T Cha. The target is surrounded by (Cambridge:UniversityPress,—c1992,2nded.) a compact dusty disk and a ∼3 times larger gaseous disk. Our Sacco,G.G.,Kastner,J.H.,Forveille,T.,etal.2014,A&A,561,A42 mainresultscanbesummarizedasfollows: Schisano,E.,Covino,E.,Alcala´,J.M.,etal.2009,A&A,501,1013 Torres,C.A.O.,Quast,G.R.,Melo,C.H.F.,&Sterzik, M.F.2008,Young – WehavespatiallyresolvedthegaseousdiskofTChainthree NearbyLooseAssociations,ed.Reipurth,B.,757–+ vanderPlas,G.,Casassus,S.,Me´nard,F.,etal.2014,ApJ,792,L25 differentmolecularemissionlines:CO(3–2),13CO(3-2)and 5