ebook img

High-Performance D/A-Converters: Application to Digital Transceivers PDF

296 Pages·2013·6.411 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High-Performance D/A-Converters: Application to Digital Transceivers

High-Performance D/A-Converters TheSpringerSeriesinAdvancedMicroelectronicsprovidessystematicinformation on all the topics relevant for the design, processing, and manufacturingof micro- electronic devices. The books, each prepared by leading researchers or engineers in their fields, cover the basic and advanced aspects of topics such as wafer processing, materials, device design, device technologies, circuit design, VLSI implementation, and subsystem technology. The series forms a bridge between physicsandengineeringandthevolumeswillappealtopracticingengineersaswell asresearchscientists. SeriesEditors: Dr.KiyooItoh HitachiLtd.,CentralResearchLaboratory,1-280Higashi-Koigakubo Kokubunji-shi,Tokyo185-8601,Japan ProfessorThomasH.Lee DepartmentofElectricalEngineering,StanfordUniversity,420ViaPalouMall, CIS-205Stanford,CA94305-4070,USA ProfessorTakayasuSakurai CenterforCollaborativeResearch,UniversityofTokyo,7-22-1Roppongi Minato-ku,Tokyo106-8558,Japan ProfessorWillySansen ESAT-MICAS,KatholiekeUniversiteitLeuven,KasteelparkArenberg10 3001Leuven,Belgium ProfessorDorisSchmitt-Landsiedel Lehrstuhlfu¨rTechnischeElektronik,TechnischeUniversita¨tMu¨nchen Theresienstrasse90,Geba¨udeN3,80290Mu¨nchen,Germany Forfurthervolumes: http://www.springer.com/series/4076 Martin Clara High-Performance D/A-Converters Application to Digital Transceivers 123 MartinClara LANTIQ-AGmbH Villach Austria ISSN1437-0387 ISBN978-3-642-31228-1 ISBN978-3-642-31229-8(eBook) DOI10.1007/978-3-642-31229-8 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012954677 (cid:2)c Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface D/A-converterssynthesize analog signals at the very heart of digital transceivers, thuslinkingtheworldofdigitalsignalprocessingtotheanalogsignaldomain.The integrationofthe digitalsignalprocessor(DSP) togetherwith data convertersand analogsignalprocessingfunctionsinadvancedCMOStechnologiesfinallyenables the realization of complete transceivers on a single silicon chip. This so-called system-on-chip(SoC)integrationdrasticallyreducesthecostandtheformfactorof theoverallsystem,ahighlydesirablesituationincost-drivenhardwaredevelopment. The topic of this work is the modeling and the implementation of high- performancecurrent-steeringD/A-convertersfor digital transceiversin nanometer CMOS technology. To comply with the target of SoC integration, the designed convertermodules are fully embeddablein a mixed-signalsystem. They use only core devices, operate from a single supply voltage, and are optimized for small siliconareaandlow-powerdissipation. In the first part of this book the fundamental performance limitations of current-steering DACs are investigated. Based on simplified models, closed-form expressionsforanumberofbasicnonidealeffectsarederivedandtested.Aspecial focusisputonthesignal-dependentnoiseperformanceinmultitonesystems,show- ingthatthetraditionalfull-scalesingle-tonecriteriaarenotadequateandmaylead tosubstantialoverdesignofbiasingand/orclockingcircuits.Theknowledgeofthe basic performancelimits allows to optimize the converterand system architecture alreadyin an early designphase, essentially tradingoffcircuitcomplexity,silicon area,andpowerdissipationforstaticanddynamicperformance. Thesecondpartofthisbookdescribesthedesignandexperimentalverification of four differentcurrent-steeringDAC testchips, implementedin standard 130nm CMOS.Theconvertersuseasingle1.5Vsupplyandhavearesolutionintherange of 12–14bits for an analog bandwidth between 2.2MHz and 50MHz. Sampling ratesbetween100MHzand350MHzareused.Dynamicelementmatching(DEM) and advanced dynamic current calibration techniques are employed to minimize therequiredsiliconarea.High-resolutionconverterswithanactiveoutputstageto maximizetheanalogoutputsignalswing,traditionallyonlyusedforlow-frequency v vi Preface applications, are demonstrated to reach signal bandwidths of 30–50MHz, while maintainingadynamiclinearitylargerthan70dBoverthewholebandwidth. Thisbookisorganizedintosevenchapters: • Chapter 1 provides an overview of D/A-converter fundamentals, especially focusingonthecurrent-steeringarchitectureandsegmentationstrategies. • In Chap.2 the generally accepted performance figures used to characterize D/A-convertersarereviewed.Theimpactofcorrelatedbiasnoiseandsampling jitteronthenoiseperformanceofacurrent-steeringDACisanalyzed,and,based onsimplifiedmodels,exactdescriptionsofthenoisespectraforsingle-toneand multitonesignalsarederived.Thejitternoiseexpressionsobtainedformultitone signalsinanNRZ-DACarealsoverifiedexperimentally. • In Chap.3 the static linearity limited by random mismatch of the current sources is explored. Based on a statistical description of the fabrication yield, expressionsfortherequiredminimumcurrent-sourceareafulfillingagivenyield specification are derived. The code-dependentoutput resistance of the current- source array is identified as a further limiting factor for the static linearity. Expressionsforthe INL ofthe single-endedandthe fullydifferentialconverter as a function of the finite output resistance of the unit current cell are given. The second partof Chap.3 givesa generaloverviewof two knownmethodsto improvethestaticlinearity:DEMandcurrentcalibration. • Chapter 4 analyzes the three basic effects that limit the dynamic linearity of a current-steering D/A-converter. Under the idealizing assumption of perfectly matched current cells, which are also not influenced by any other large-scale imperfections,itispossibleto deriveclosed-formexpressionsforthenonlinear distortion of a synthesized sine wave. The first effect is given by switching asymmetries that result in unsymmetrical current pulses. These are shown to generate even-order harmonic distortion in fully differential converters. The second effect is caused by the finite feed-through of the output voltage to the parasitic capacitance connected at the common tail node of the current switchpair.Theresultingcode-dependenterrorchargepacketsinjectedintothe output generate odd-order harmonic distortion. The third effect that limits the dynamiclinearityofacurrent-steeringD/A-converteristhefrequency-dependent distortion due to the code-dependent output impedance of the current-source array.Itisshownthatinafullydifferentialconverterwithstandardcurrent-cell architecture this effect is at least within the boundaries of practical sampling frequencies, not likely to become dominant compared to the switching errors. Nevertheless,it isafundamentallimitationto theachievabledynamiclinearity, since it cannot be compensated straightforwardly, e.g., by applying a special switchingalgorithm.ThesecondpartofChap.4describesvariousknowncircuit techniquestoimprovethedynamiclinearityofcurrent-steeringD/A-converters. • Chapter 5 describes the implementation of two †(cid:2) D/A-converter testchips targeted at wireline communication applications. The first design is a 14-bit DAC targeted at the ADSL2C downstream bandwidth of 2.2MHz. It uses a second-ordernoiseshapertogetherwithaverysimplebarrel-shiftalgorithmand Preface vii is optimized for low-power dissipation. The second design is a multi-mode †(cid:2)-converter for ADSL and VDSL. An interleaved current-cell architecture implementsan effectivereturn-to-zero(RZ) for the single currentcell and also allows to use a modified data weighted averaging (DWA) algorithm. With a sampling rate of 350MHz and an oversampling ratio of only 6, a dynamic range of 12 bits in a bandwidth very close to 30MHz is demonstrated.Due to the effective RZ, the dynamic linearity around 30MHz remains above 75dB. The converter module is readily scalable—by register programming—tolower signalbandwidths,withnotonlydrasticallyreducedpowerconsumptionbutalso increasedresolution. • InChap.6twoNyquist-rateD/A-convertertestchipsusingdynamiccurrentcali- bration in the backgroundare described. Both designs implement a segmented 13-bit converter core. The first module is a classical, resistively terminated single-polarityDAC, while the second converteruses a dual-polaritycore with activetransimpedanceoutputstagetomaximizethe availablevoltageswing.In conjunction with an interleaved current-cell architecture this DAC achieves a signalbandwidthof50MHzwithadynamiclinearityexceeding70dBoverthe fullsignalbandwidth.Theperiodicityofthebackgroundcalibration,normallya source of low-frequencytonaldisturbances,is destroyedby the introductionof a randomized calibration slot length. Thereby the calibration refresh tones are spectrallyshapedandmergedwiththenoisefloor.Thisrandomizationalsohelps to suppressthe image tone due to dynamiccalibration effectsin an interleaved architecture. Two novel strategies to trim the elements in converter segments withdifferentweightsareemployed.Thefirstdesigntriestomatchthesegment boundaries by appropriately summing together uncalibrated and previously calibrated DACelementsfor comparisonwith a uniquereferenceelement.The seconddesignperformsdirectcalibrationofsingleDACelementsindifferently weighted segments. In order to generate the required scaled reference currents with an accurate ratio, a referencecell array is introduced,which calibrates its constituting elements in a separate calibration loop, also running fully in the background. • Finally,Chap.7summarizesthemainresultsofthiswork,whiletryingtodraw general conclusions. Also, it provides an outlook on future developments that are expected to happen in the area of CMOS current-steering D/A-converters targetedatdigitalcommunicationsystems. Villach,Austria MartinClara (cid:127) Contents 1 Introduction .................................................................. 1 1.1 IntegratedD/A-Converters............................................. 1 1.2 DACsforHighlyIntegratedTransceivers............................. 7 1.3 TheIdealD/A-Converter............................................... 11 1.3.1 TheNonReturn-to-ZeroDAC................................ 12 1.3.2 TheReturn-to-ZeroDAC ..................................... 14 1.4 TheCurrent-SteeringDAC............................................. 16 1.4.1 GeneralDescription........................................... 16 1.4.2 Single-PolarityandDual-PolarityCurrentCells............. 18 1.4.3 PassiveandActiveOutputStage.............................. 18 1.5 ArrayCoding........................................................... 20 1.5.1 UnaryArray.................................................... 20 1.5.2 BinaryArray................................................... 21 1.5.3 SegmentedArray.............................................. 22 2 PerformanceFiguresofD/A-Converters.................................. 25 2.1 StaticAccuracy......................................................... 25 2.1.1 GainandOffsetError ......................................... 25 2.1.2 DifferentialNonlinearity...................................... 26 2.1.3 IntegralNonlinearity .......................................... 27 2.2 DynamicPerformance.................................................. 28 2.2.1 HarmonicDistortion........................................... 28 2.2.2 IntermodulationDistortion.................................... 29 2.2.3 SpuriousFreeDynamicRange................................ 30 2.2.4 DynamicRange................................................ 31 2.2.5 MultitoneLinearity............................................ 32 2.3 NoisePerformance..................................................... 35 2.3.1 Quantization“Noise”.......................................... 35 2.3.2 CircuitNoise................................................... 38 2.3.3 JitterNoise..................................................... 46 ix x Contents 3 StaticLinearity............................................................... 63 3.1 LimitationsfortheStaticLinearity.................................... 63 3.1.1 MatchingofCurrentSources ................................. 64 3.1.2 StatisticalDescriptionoftheINL............................. 65 3.1.3 StatisticalDescriptionoftheDNL............................ 66 3.1.4 MinimumAreaRequirements ................................ 68 3.1.5 Code-DependentOutputImpedance.......................... 74 3.2 DynamicElementMatchingTechniques.............................. 78 3.2.1 ClockedLevelAveraging ..................................... 80 3.2.2 Data-WeightedAveraging..................................... 81 3.2.3 OtherDEMTechniques....................................... 82 3.3 CurrentSourceCalibration............................................. 84 3.3.1 FactoryTrimming ............................................. 85 3.3.2 Self-calibration ................................................ 86 3.3.3 LocalCalibrationDAC........................................ 88 3.3.4 GlobalCalibrationDAC....................................... 89 3.3.5 TrimmableFloatingCurrentSource.......................... 90 3.3.6 DynamicCurrentCalibration................................. 91 4 DynamicLinearity........................................................... 97 4.1 LimitationsfortheDynamicLinearity................................ 97 4.1.1 Frequency-DependentOutputImpedance.................... 97 4.1.2 AGeneralizedSwitchingErrorModel....................... 102 4.1.3 SwitchingTransitionMismatch............................... 107 4.1.4 ChargeSharingattheSwitchingNode....................... 111 4.1.5 ASPICE-SimulationExample................................ 116 4.1.6 OtherNonlinearEffects....................................... 118 4.2 MethodstoImprovetheDynamicPerformance...................... 118 4.2.1 CurrentSwitchwithReducedGateVoltageSwing.......... 119 4.2.2 SourceNodeBootstrapping................................... 122 4.2.3 SourceNodeIsolation......................................... 123 4.2.4 DifferentialQuadSwitching.................................. 124 4.2.5 ConstantDigitalActivity...................................... 125 4.2.6 Return-to-ZeroandTrack/Attenuate.......................... 126 4.2.7 DoubleReturn-to-Zero........................................ 128 4.2.8 Full-ClockInterleavedCurrentCells......................... 129 5 NoiseshapedD/A-Converters............................................... 133 5.1 A14-bitLow-PowerD/A-Converter .................................. 133 5.1.1 ConverterArchitecture........................................ 134 5.1.2 DEMSelection ................................................ 135 5.1.3 UnitCurrentCell .............................................. 136 5.1.4 Low-NoiseBiasing............................................ 138 5.1.5 OutputStage................................................... 138 5.1.6 Layout.......................................................... 139 5.1.7 ExperimentalResults.......................................... 141

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.