Table Of ContentBBrriigghhaamm YYoouunngg UUnniivveerrssiittyy
BBYYUU SScchhoollaarrssAArrcchhiivvee
Theses and Dissertations
2015-11-01
HHiigghh--EEffifficciieennccyy PPaassssiivvee aanndd AAccttiivvee PPhhaasseedd AArrrraayyss aanndd AArrrraayy
FFeeeeddss ffoorr SSaatteelllliittee CCoommmmuunniiccaattiioonnss
Zhenchao Yang
Brigham Young University
Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Electrical and Computer Engineering Commons
BBYYUU SScchhoollaarrssAArrcchhiivvee CCiittaattiioonn
Yang, Zhenchao, "High-Efficiency Passive and Active Phased Arrays and Array Feeds for Satellite
Communications" (2015). Theses and Dissertations. 5741.
https://scholarsarchive.byu.edu/etd/5741
This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
High-EfficiencyPassiveandActivePhasedArraysandArrayFeeds
forSatelliteCommunications
ZhenchaoYang
Adissertationsubmittedtothefacultyof
BrighamYoungUniversity
inpartialfulfillmentoftherequirementsforthedegreeof
DoctorofPhilosophy
KarlF.Warnick,Chair
NealK.Bangerter
BrianD.Jeffs
MichaelA.Jensen
DavidG.Long
DepartmentofElectricalandComputerEngineering
BrighamYoungUniversity
November2015
Copyright©2015ZhenchaoYang
AllRightsReserved
ABSTRACT
High-EfficiencyPassiveandActivePhasedArraysandArrayFeeds
forSatelliteCommunications
ZhenchaoYang
DepartmentofElectricalandComputerEngineering,BYU
DoctorofPhilosophy
Satellite communication (Satcom) services are used worldwide for voice, data, and video
links due to various appealing features. Parabolic reflector antennas are typically used to serve
a cost effective scheme for commercial applications. However, mount degradation, roof sag, and
orbitaldecaymotivatetheneedforbeamsteering. Limitedscanrangebeamsteeringopensathird
option for electronic beam steering with lower cost than full aperture phased arrays and higher
trackingspeedandaccuracythanmechanical-onlysteering.
Multiplehighefficiencypassivepatcharrayfeedsweredesigned,fabricated,andmeasured,
including a 2×2 MSA array, a stacked shorted annular patch antenna, and an SIW-fed hexago-
nal array feed based on PTFE material, achieving performance comparable to a horn feed. For
multiband dual polarization applications, passive MSA feed solutions are also provided. Multiple
MSA array feeds with high isolation were designed for dual band dual polarization applications.
More functionality can be realized with multi-layer PCB techniques for complex communication
scenarios.
Limited scan range electronic beam-steering with a parabolic reflector fed by an active
array feed which only needs gain control was demonstrated experimentally, leading to a low cost
and effective solution for active beam scanning. A cost-effective flat-panel phased array with
limited scan range electronic beam-steering was proposed by tiling high efficiency 4×4 passive
subarraysandperformingbeamscanningatthetilelevel. Thesidelobeissuewasalsoinvestigated
tocomplywiththepatternmaskrequirementsetbyFCC.
Toenablebetteruseofcircularlypolarized(CP)MSAsforelectronicallybeam-formedan-
tennasystems,theimpactofmutualcouplingontheperformanceofhigh-sensitivitydual-polarized
receivers for satellite communications applications was analyzed. A new analysis method for in-
trinsically dual-CP MSAs based on an equivalent circuit model and Jones matrices was proposed
and validated to overcome the port isolation challenge. The model provides accurate estimates
of impedances and S-parameters, as well as field parameters such as axial ratio. The feasible re-
gion for XPI and impedance mismatch factor is found for dual CP antennas. The circuit model
enables multiple useful applications. Effective decoupling and matching schemes were proposed
anddemonstrated,leadingtoahighisolation,goodmatch,andwideARbandwidthdualCPMSA
forsatellitecommunications.
Keywords: Passive and Active Array Feed, Microstrip Array, Multiband, Dual Polarization, Cir-
cularPolarization,LimitedScanRangeBeamSteering,SatelliteCommunications
ACKNOWLEDGMENTS
I would like to thank Dr. Karl Warnick for advising, helping, and encouraging me all
the way through my five-year doctorate program. I learn so much from him in both practical
knowledge and metaphysical wisdom. Whenever I have difficulties in not only study but also life,
he always offers generous help as much as he can. He encourages and supports me to explore
open research questions and guides me to think problems critically and comprehensively. I am so
gratefulandproudIcanbeoneofDr. Warnick’sPhDstudents.
I would like to thank all my committee members Dr. Neal Bangerter, Dr. Brian Jeffs,
Dr. Michael Jensen, and Dr. David Long. Their feedback and comments on my research and
dissertation excite me to reflect on what are the core contributions of my work from a big picture
and how to achieve and deliver them. In addition, I appreciate Dr. Dah-Jye Lee advising me from
studytolifeasaninternationalstudentandsharinghiswonderfulexperiencewithme.
I would like to thank all group members of the SatCom project since 2010. I appreciate
those valuable discussions, fruitful collaborations, and friendships, particularly with Kyle Brown-
ing, Matt Morin, and Mahrukh Khan. Thank Greg Mockett for bringing those exciting SatCom
projectsandsupportingthegroup.
I am grateful I can make so many good friends during the five years study in CB 480. Fun
discussions and mild arguments on various topics make the lab time colorful. Particularly, thank
Junming Diao, Dr. Rashid Mehmood, and James Eck for discussing all kinds of antennas and
propagationproblems,andthankRichardBlackandJonathonSpencerfortheirgeneroushelp.
Thank my parents for their consistent encouragement and support. Thank my wife for
taking care of the family, especially those two little cute and naughty boys. I cannot imagine how
Icansurvivethroughtheprogramwithoutthefamily’ssupport.
TABLEOFCONTENTS
LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Chapter1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 LimitedScanRangeElectronicBeamSteeringSystemsandPassiveArrayFeeds . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter2 HighEfficiencyPassiveArrayFeeds . . . . . . . . . . . . . . . . . . . . . 6
2.1 FiguresofMeritforaTerrestrialAntennainSatelliteCommunicationSystems . . 6
2.2 HighRadiationEfficiencyMicrostripAntenna . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 SubstrateParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 ArrayDesigns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 SimulationandMeasurement . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 HighEfficiencyKuBandStackedShortedAnnularPatchAntennaFeed . . . . . . 13
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 AntennaDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 SimulationandMeasurementResults . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 RadialSIWFedHexagonalArrayFeed . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 DesignConceptandConfiguration . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 SimulatedResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Chapter3 MultibandDualPolarizedPassiveArrayFeeds . . . . . . . . . . . . . . . 28
3.1 Tx/RxPlanarArrayFeedforVerySmallApertureTerminal(VSAT) . . . . . . . . 28
3.1.1 VSATArrayFeedDesign . . . . . . . . . . . . . . . . . . . . . . . . . . 29
iv
3.1.2 SimulationandMeasurementResults . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 DualPolarizedArrayFeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 DualLinearlyPolarizedArrayFeedIntegratedwithRFCircuits . . . . . . 34
3.2.2 DualCircularlyPolarizedArrayFeed . . . . . . . . . . . . . . . . . . . . 34
3.3 Multiband Dual Polarization High Efficiency Array Feed for Ku/Reverse Band
SatelliteCommunications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 MultibandArrayFeedDesign . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Chapter4 ElectronicallySteeredArrayFeedforLimitedScanRangeBeamSteering 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 4×2ElectronicallySteeredArrayFeedSystem . . . . . . . . . . . . . . . . . . . 50
4.3 4×4ElectronicallySteeredArrayFeedSystem . . . . . . . . . . . . . . . . . . . 54
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Chapter5 LimitedScanRangeSteeredBeamVSATSystembyTiling4×4Microstrip
SubarrayTile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Planar4×4ArrayTileDesignforaLimitedScanRangeSteeredBeamVSATSystem 57
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.2 DesignConceptandPracticalConsiderations . . . . . . . . . . . . . . . . 58
5.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 TileArraySimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.1 4×4TileArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Chapter6 Polarimetric and Coupling Analysis for a Dual Polarization Communi-
cationSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1 EffectofMutualCouplingontheSensitivityofDualPolarizedReceivers . . . . . 68
6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 CorrelationCoefficientandS-parameters . . . . . . . . . . . . . . . . . . 68
v
6.1.3 EffectofMutualCouplingonSensitivity . . . . . . . . . . . . . . . . . . 70
6.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Analysis of Intrinsically Dual Circularly Polarized Microstrip Antennas Using an
EquivalentCircuitModelandJonesMatrixFormulation . . . . . . . . . . . . . . 72
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 JonesMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.3 EquivalentCircuitModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.4 FundamentalPerformanceBoundsforIntrinsicallyDualCPMSAs . . . . 82
6.2.5 ApplicationsoftheCircuitModel . . . . . . . . . . . . . . . . . . . . . . 91
6.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Chapter7 ConclusionandFutureWork . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
vi
LISTOFTABLES
2.1 Impactof1dBefficiencychangeonSNR . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Simulated efficiency and measured SNR results of different antenna feeds at 12
GHzonanf/D=0.74dish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Simulated efficiency and SNR results of different antenna feeds at 12 GHz on an
f/D=0.74dish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Simulatedarrayfeedefficienciesandsystemperformance . . . . . . . . . . . . . . 46
vii
LISTOFFIGURES
2.1 Impact of radiation, aperture, and spillover efficiencies on SNR for a parabolic
reflector based ground terminal with typical parameters and perfect matching be-
tweentheantennaandthereceiver. Radiationefficiencyisthebiggestplayer. . . . 8
2.2 The influence of substrate permittivity ε on radiation efficiency and bandwidth.
r
Higher ε leads to lower radiation efficiency and narrower bandwidth even on 60
r
mil thick material at 12 GHz. The trends would be more obvious on a thinner
materialwithlesssurfacewaveslaunched. . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The influence of substrate permittivity ε on directivity pattern at the H-plane. As
r
ε increases,thepatternisdeformedduetostrongsurfacewaves. . . . . . . . . . . 10
r
2.4 Theinfluenceofsubstratethicknessonradiationefficiencyandbandwidth. Larger
substratethicknesscanimproveradiationefficiencyandbandwidth. . . . . . . . . 11
2.5 The influence of substrate thickness on directivity pattern at the H-plane. Higher
crosspolarizationiscausedbylargersubstratethickness. . . . . . . . . . . . . . . 11
2.6 FabricatedMSAandcavity-backedMSAarrays. . . . . . . . . . . . . . . . . . . 12
2.7 Simulated and measured radiation efficiency over frequency. The results agree
well with the highest reported radiation efficiency 93% for a typical 2×2 MSA
array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 ExplodedviewoftheSSAPantennafeed. . . . . . . . . . . . . . . . . . . . . . . 16
2.9 E-field distribution at 12 GHz: (a) cross section view on a yz plane, (b) xy plane
on the SAP, (c) xy plane on the top patch. The distributions show the two patches
workinginthesamemodewith180◦ phasedifference. . . . . . . . . . . . . . . . 17
2.10 Optimizationflowchartforon-reflectorsimulation. . . . . . . . . . . . . . . . . . 18
2.11 ConfigurationoftheSSAPantennafeedwithdimensionsonsideview. . . . . . . . 18
2.12 SimulatedandmeasuredreturnlossoftheSSAPantenna,comparedwiththesim-
ulatedcasesofnoshortingpostandnotoppatch. . . . . . . . . . . . . . . . . . . 19
2.13 MaximumnormalizedpatternsoftheSSAPonE-planeat12GHz. . . . . . . . . . 20
2.14 MaximumnormalizedpatternsoftheSSAPonH-planeat12GHz. . . . . . . . . . 20
2.15 GainofSAPandSSAPasafunctionofgroundplanesize. . . . . . . . . . . . . . 21
2.16 Fabricated 2×2 MSA and SSAP feeds compared with the measured commercial
hornfeed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.17 Simulated aperture, spillover, and radiation efficiencies of three types of feed as a
functionoff/D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
viii
2.18 Simulated SNR of three types of feed as a function of f/D. Measured values on an
f/D=0.74dish. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.19 Configuration of the hexagonal array feed: (a) antenna array layer, (b) SIW layer,
(c)stack-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.20 SimulatedS ofthehexagonalarrayfeed. . . . . . . . . . . . . . . . . . . . . . . 27
11
2.21 Simulatedgainpatternsofthehexagonalarrayfeed. . . . . . . . . . . . . . . . . . 27
3.1 Configuration of the proposed 2×2 passive phased array feed. Dimensions: L1 =
5mm,L2=6mm,L3=4.5mm,L4=2.3mm,S1=0.3mm,S2=0.4mm,W1=
0.2mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Simulatedandmeasuredinputreflectioncoefficientoverfrequency. . . . . . . . . 32
3.3 Simulatedandmeasuredisolationoverfrequency. Theisolationachieves55dBin
theTxband. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Simulatedandmeasuredgainpatternsat12.2GHz. . . . . . . . . . . . . . . . . . 33
3.5 Simulatedandmeasuredmaximumnormalizedpatternsat14GHz. . . . . . . . . . 33
3.6 Fabricated dual linearly polarized array feed integrated with RF circuits: (a) an-
tennalayer,(b)RFcircuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Configuration of dual CP array feed for Ku band DBS: (a) antenna layer, (b) dis-
tributionnetwork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 FabricateddualCParrayfeedforKubandDBS:(a)antennalayer,(b)distribution
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Interleavingarrayconfigurationsfordualbandoperationwiththesamephasecen-
ter: (a)2×2array,(b)4×4array. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.10 Cavity backed patch antenna layout for both bands with dimensions: Ku a = 6.04,
Ku s = 1.2, Ku d = 15.9, Ku fd = 1.26, RB a = 4.04, RB s = 0.6, RB d = 10.9,
RB fd=1.16,Pin Ku=0.26,Pin RB=0.36,andPin s=0.6. Valuesareinmm. . 41
3.11 Distributionnetworklayoutsfor: (a)Kuband,(b)RB.Dimensions: w1=0.29,w2
=0.55,w3=0.8,w4=0.94,w5=0.84,l1=2.07,l2=4.18,l3=3.4,l4=2.72,l5
= 3.15, l6 = 3.02, d1 = 2.24, d2 = 2.2, d3 = 2.32, d4 = 1.94, d5 = 4.08, d6 = 2.01,
r1=1.5,r2=3,r3=0.97,r4=2.92,s1=1.8,s2=1.6,pad1=0.66,pad1s=0.98,
Pad2=0.76,trw=3.6,trl=0.4,caw=13,andcal=5.4. Valuesareinmm. . . . . 42
3.12 Stack-upconfigurationoftheKu/RBarrayandfeednetworks. . . . . . . . . . . . 43
3.13 Optimizationflowchartforon-reflectorsimulation. . . . . . . . . . . . . . . . . . 44
3.14 Stack-upconfigurationoftheKu/RBarrayandfeednetworks. . . . . . . . . . . . 45
3.15 Simulated S-parameters of the dual Ku/RB array: (a) Ku vertical polarized port,
(b)Kuhorizontalpolarizedport,(c)RBLHCPport,(d)RBRHCPport. . . . . . . 47
ix
Description:Satellite communication (Satcom) services are used worldwide for voice, data, and video links due to .. 2.15 Gain of SAP and SSAP as a function of ground plane size 21 explained in Section 2.3.3. The SNR for