ebook img

High-Dimensional Statistics A Non-Asymptotic Viewpoint PDF

571 Pages·2019·5.33 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High-Dimensional Statistics A Non-Asymptotic Viewpoint

“Non-asymptotic, high-dimensional theory is critical for modern statistics and machine learning.Thisbookisuniqueinprovidingacrystalclear,complete,andunifiedtreatmentof thearea.Withtopicsrangingfromconcentrationofmeasuretographicalmodels,theauthor weavestogetherprobabilitytheoryanditsapplicationstostatistics.Idealforgraduatestudents andresearchers.Thiswillsurelybethestandardreferenceonthetopicformanyyears.” —LarryWasserman,CarnegieMellonUniversity “MartinWainwrightbringshislargeboxofanalyticalpowertoolstobearontheproblemsof theday—theanalysisofmodelsforwidedata.Abroadknowledgeofthisnewareacombines withhispowerfulanalyticalskillstodeliverthisimpressiveandintimidatingwork—boundto beanessentialreferenceforallthebravesoulsthattrytheirhand.” —TrevorHastie,StanfordUniversity “Thisbookprovidesanexcellenttreatmentofperhapsthefastestgrowingareawithinhigh- dimensionaltheoreticalstatistics—non-asymptotictheorythatseekstoprovideprobabilistic boundsonestimatorsasafunctionofsamplesizeanddimension.Itoffersthemostthorough, clear,andengagingcoverageofthisareatodate,andisthuspoisedtobecomethedefinitive referenceandtextbookonthistopic.” —GeneveraAllen,RiceUniversity “Statistical theory and practice have undergone a renaissance in the past two decades, with intensive study of high-dimensional data analysis. No researcher has deepened our understandingofhigh-dimensionalstatisticsmorethanMartinWainwright.Thisbookbrings the signature clarity and incisiveness of his published research into book form. It will be a fantasticresourceforbothbeginningstudentsandseasonedresearchers,asthefieldcontinues tomakeexcitingbreakthroughs.” —JohnLafferty,YaleUniversity “This is an outstanding book on high-dimensional statistics, written by a creative and celebratedresearcherinthefield.Itgivescomprehensivetreatmentsofmanyimportanttopics instatisticalmachinelearningand,furthermore,isself-contained,fromintroductorymaterial tothemostup-to-dateresultsonvariousresearchfrontiers.Thisbookisamust-readforthose whowishtolearnandtodevelopmodernstatisticalmachinetheory,methodsandalgorithms.” —JianqingFan,PrincetonUniversity “This book provides an in-depth mathematical treatment and methodological intuition for high-dimensional statistics. The main technical tools from probability theory are carefully developedandtheconstructionandanalysisofstatisticalmethodsandalgorithmsforhigh- dimensional problems are presented in an outstandingly clear way. Martin Wainwright has writtenatrulyexceptional,inspiring,andbeautifulmasterpiece!” —PeterBu¨hlmann,ETHZurich “ThisnewbookbyMartinWainwrightcoversmoderntopicsinhigh-dimensionalstatistical inference,andfocusesprimarilyonexplicitnon-asymptoticresultsrelatedtosparsityandnon- parametricestimation.Thisisamust-readforallgraduatestudentsinmathematicalstatistics and theoretical machine learning, both for the breadth of recent advances it covers and the depthofresultswhicharepresented.Theexpositionisoutstandinglyclear,startingfromthe firstintroductorychaptersonthenecessaryprobabilistictools.Then,thebookcoversstate-of- the-artadvancesinhigh-dimensionalstatistics,withalwaysacleverchoiceofresultswhich havetheperfectmixofsignificanceandmathematicaldepth.” —FrancisBach,INRIAParis “Wainwright’sbookonthosepartsofprobabilitytheoryandmathematicalstatisticscritical to understanding of the new phenomena encountered in high dimensions is marked by the clarity of its presentation and the depth to which it travels. In every chapter he starts with intuitiveexamplesandsimulationswhicharesystematicallydevelopedeitherintopowerful mathematicaltoolsorcompleteanswerstofundamentalquestionsofinference.Itisnoteasy, butelegantandrewardingwhetherreadsystematicallyordippedintoasareference.” —PeterBickel,UCBerkeley High-Dimensional Statistics Recentyearshavewitnessedanexplosioninthevolumeandvarietyofdatacollected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodologyandtheory—includingtailbounds,concentrationinequalities,uniform laws and empirical process, and random matrices—as well as chapters devoted to in-depth exploration of particular model classes—including sparse linear models, matrix models with rank constraints, graphical models, and various types of non- parametricmodels. With hundreds of worked examples and exercises, this text is intended both for coursesandforself-studybygraduatestudentsandresearchersinstatistics,machine learning,andrelatedfieldswhomustunderstand,apply,andadaptmodernstatistical methodssuitedtolarge-scaledata. MARTIN J. WAINWRIGHT is a Chancellor’s Professor at the University of California,Berkeley,withajointappointmentbetweentheDepartmentofStatistics andtheDepartmentofElectricalEngineeringandComputerSciences.Hisresearch liesatthenexusofstatistics,machinelearning,optimization,andinformationtheory, and he has published widely in all of these disciplines. He has written two other books,oneongraphicalmodelstogetherwithMichaelI.Jordan,andoneonsparse learning together with Trevor Hastie and Robert Tibshirani. Among other awards, he has received the COPSS Presidents’ Award, has been a Medallion Lecturer and BlackwellLecturerfortheInstituteofMathematicalStatistics,andhasreceivedBest PaperAwardsfromtheNIPS,ICML,andUAIconferences,aswellasfromtheIEEE InformationTheorySociety. CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS EditorialBoard Z.Ghahramani(DepartmentofEngineering,UniversityofCambridge) R.Gill(MathematicalInstitute,LeidenUniversity) F.P.Kelly(DepartmentofPureMathematicsandMathematicalStatistics, UniversityofCambridge) B.D.Ripley(DepartmentofStatistics,UniversityofOxford) S.Ross(DepartmentofIndustrialandSystemsEngineering, UniversityofSouthernCalifornia) M.Stein(DepartmentofStatistics,UniversityofChicago) This series of high-quality upper-division textbooks and expository monographs covers all aspectsofstochasticapplicablemathematics.Thetopicsrangefrompureandappliedstatistics toprobabilitytheory,operationsresearch,optimization,andmathematicalprogramming.The books contain clear presentations of new developments in the field and also of the state of theartinclassicalmethods.Whileemphasizingrigoroustreatmentoftheoreticalmethods,the booksalsocontainapplicationsanddiscussionsofnewtechniquesmadepossiblebyadvances incomputationalpractice. Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/statistics. Recenttitlesincludethefollowing: 23. AppliedAsymptotics,byA.R.Brazzale,A.C.DavisonandN.Reid 24. RandomNetworksforCommunication,byMassimoFranceschettiandRonaldMeester 25. DesignofComparativeExperiments,byR.A.Bailey 26. SymmetryStudies,byMarlosA.G.Viana 27. ModelSelectionandModelAveraging,byGerdaClaeskensandNilsLidHjort 28. BayesianNonparametrics,editedbyNilsLidHjortetal. 29. FromFiniteSampletoAsymptoticMethodsinStatistics,byPranabK.Sen,JulioM.Singerand AntonioC.PedrosadeLima 30. BrownianMotion,byPeterMo¨rtersandYuvalPeres 31. Probability:TheoryandExamples(FourthEdition),byRickDurrett 33. StochasticProcesses,byRichardF.Bass 34. RegressionforCategoricalData,byGerhardTutz 35. ExercisesinProbability(SecondEdition),byLo¨ıcChaumontandMarcYor 36. StatisticalPrinciplesfortheDesignofExperiments,byR.Mead,S.G.GilmourandA.Mead 37. QuantumStochastics,byMou-HsiungChang 38. NonparametricEstimationunderShapeConstraints,byPietGroeneboomandGeurtJongbloed 39. LargeSampleCovarianceMatricesandHigh-DimensionalDataAnalysis,byJianfengYao,Shurong ZhengandZhidongBai 40. MathematicalFoundationsofInfinite-DimensionalStatisticalModels,byEvaristGine´andRichard Nickl 41. Confidence,Likelihood,Probability,byToreSchwederandNilsLidHjort 42. ProbabilityonTreesandNetworks,byRussellLyonsandYuvalPeres 43. RandomGraphsandComplexNetworks(Volume1),byRemcovanderHofstad 44. FundamentalsofNonparametricBayesianInference,bySubhashisGhosalandAadvanderVaart 45. Long-RangeDependenceandSelf-Similarity,byVladasPipirasandMuradS.Taqqu 46. PredictiveStatistics,byBertrandS.ClarkeandJenniferL.Clarke 47. High-DimensionalProbability,byRomanVershynin 48. High-DimensionalStatistics,byMartinJ.Wainwright 49. Probability:TheoryandExamples(FifthEdition),byRickDurrett High-Dimensional Statistics A Non-Asymptotic Viewpoint Martin J. Wainwright UniversityofCalifornia,Berkeley UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108498029 DOI:10.1017/9781108627771 ©MartinJ.Wainwright2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Wainwright,Martin(MartinJ.),author. Title:High-dimensionalstatistics:anon-asymptoticviewpoint/MartinJ. Wainwright(UniversityofCalifornia,Berkeley). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2019.| Series:Cambridgeseriesinstatisticalandprobabilisticmathematics;48| Includesbibliographicalreferencesandindexes. Identifiers:LCCN2018043475|ISBN9781108498029(hardback) Subjects:LCSH:Mathematicalstatistics–Textbooks.|Bigdata. Classification:LCCQA276.18.W352019|DDC519.5–dc23 LCrecordavailableathttps://lccn.loc.gov/2018043475 ISBN978-1-108-49802-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. List of chapters Listofillustrations xv 1 Introduction 1 2 Basictailandconcentrationbounds 21 3 Concentrationofmeasure 58 4 Uniformlawsoflargenumbers 98 5 Metricentropyanditsuses 121 6 Randommatricesandcovarianceestimation 159 7 Sparselinearmodelsinhighdimensions 194 8 Principalcomponentanalysisinhighdimensions 236 9 Decomposabilityandrestrictedstrongconvexity 259 10 Matrixestimationwithrankconstraints 312 11 Graphicalmodelsforhigh-dimensionaldata 347 12 ReproducingkernelHilbertspaces 383 13 Nonparametricleastsquares 416 14 Localizationanduniformlaws 453 15 Minimaxlowerbounds 485 References 524 Subjectindex 540 Authorindex 548 vii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.