UUnniivveerrssiittyy ooff TTeennnneesssseeee,, KKnnooxxvviillllee TTRRAACCEE:: TTeennnneesssseeee RReesseeaarrcchh aanndd CCrreeaattiivvee EExxcchhaannggee Doctoral Dissertations Graduate School 12-2004 HHiigghh AAccccuurraaccyy DDiissttrriibbuutteedd TTaarrggeett DDeetteeccttiioonn aanndd CCllaassssiifificcaattiioonn iinn SSeennssoorr NNeettwwoorrkkss BBaasseedd oonn MMoobbiillee AAggeenntt FFrraammeewwoorrkk Xiaoling Wang University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Electrical and Computer Engineering Commons RReeccoommmmeennddeedd CCiittaattiioonn Wang, Xiaoling, "High Accuracy Distributed Target Detection and Classification in Sensor Networks Based on Mobile Agent Framework. " PhD diss., University of Tennessee, 2004. https://trace.tennessee.edu/utk_graddiss/2253 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Xiaoling Wang entitled "High Accuracy Distributed Target Detection and Classification in Sensor Networks Based on Mobile Agent Framework." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Electrical Engineering. Hairong Qi, Major Professor We have read this dissertation and recommend its acceptance: Mongi A. Abidi, Michael J. Roberts. Daniel B. Koch, Hamparsum Bozdogan Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) TotheGraduateCouncil: I am submitting herewith a dissertation written by Xiaoling Wang entitled “High Accuracy Distributed Target Detection and Classification in Sensor Networks Based on Mobile Agent Framework.” Ihaveexaminedthefinalelectroniccopyofthisdissertationforformandcontent and recommend that it be accepted in partial fulfillment of the requirements for the degree of DoctorofPhilosophy, withamajorinElectricalEngineering. HairongQi MajorProfessor Wehavereadthisdissertation andrecommenditsacceptance: MongiA.Abidi MichaelJ.Roberts DanielB.Koch HamparsumBozdogan AcceptedfortheCouncil: AnneMayhew ViceChancellorandDeanof GraduateStudies (Originalsignaturesareonfilewithofficialstudentrecords.) High Accuracy Distributed Target Detection and Classification in Sensor Networks Based on Mobile Agent Framework A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Xiaoling Wang December, 2004 Copyright (cid:0)c2004byXiaolingWang Allrightsreserved. ii Acknowledgments Iwouldliketoextendmysinceregratitudeandappreciationtoalltheindividualswhomade thisdissertationpossible. Firstandforemost,I amgratefulto myadviserDr. HairongQi. Herguidanceandencour- agementthrough mystudieshas allowed meto develop myskills as a researcher. Without her support,thisworkwouldnothavebeenpossible. AlsoIamhighlyindebtedtoDr. Hamparsum Bozdogan,Dr. MongiAbidi,Dr. MichaelRoberts,andDr. DanielKochforservingasmembers ofmycommitteeandprovidingalltheenlighteningsuggestions. Special acknowledgment is given to Mr. Steve Beck, Mr. Joe Reynolds, and Ms. Carol BreweratBAESystems,Inc. fortheirelaborateworkhelpingussetupthefielddemoatAustin, TXandcollectthevaluableexperimentaldata. IalsoappreciatetheworkbyProfessorYuHen HuandhisstudentsatUniversityofWisconsin-Madisonforgeneratingthecross-validationdata setbasedontheSITEX02fielddemo. Last but not the least, I sincerely thank my husband Hongtao, my parents, my parents-in- law,mybrotherandsisterfortheirunconditionalsupport,love,andencouragementthroughmy life. iii Publication History Thisdissertationappearsinpartinthefollowingacademicjournalsandconferences. X.Wang,H.Qi,S.Beck(2004). “Distributedmulti-targetdetectioninsensornetworks”, (cid:0) FrontiersinDistributedSensorNetworks. Editors: R.Brooks,S.S.Iyengar, CRCPress. X.Wang,H.Qi,S.Beck,H.Du(2004). “Aprogressive approachtodistributed multiple (cid:0) targetdetectioninsensornetworks”,SensorNetworkOperations. Editor: S.Phoha,IEEE Press. X.Wang,H.Qi,Y.Tian,andS.S.Iyengar(2004). “Collaborativesignalandinformation (cid:0) processinghierarchyindistributed sensornetworks”,SubmittedtoInternationalJournal onDistributedSensorNetwork. H.Qi, Y. Xu,andX.Wang(2003). “Mobile-agent-basedcollaborative signalandinfor- (cid:0) mationprocessinginsensornetworks”,ProceedingsofIEEE,91(8): 1172-1183,August. H. Qi, X. Wang, S. S. Iyengar, and K. Chakrabarty (2002). “High performance sensor (cid:0) integrationindistributed sensornetworksusingmobileagents,” InternationalJournalof HighPerformanceComputingApplications, 16(3): 325-336,August. X.Wang,H.Qi(2004). “Collaborative unknowntargetrecognitioninsensornetworks”, (cid:0) TheNineteenthNationalConference onArtificialIntelligence, WorkshoponSensorNet- works,SanJose,CA,July. X. Wang, H. Qi (2004). “Mobile agent based progressive multiple target detection in (cid:0) sensornetworks”,InternationalConferenceonAcoustics,Speech,andSignalProcessing, Montreal,Canada,May. X. Wang, H. Qi, H. Du (2003). “Distributed source number estimation for multiple (cid:0) target detection in sensor networks”, IEEE Workshop on Statistical Signal Processing, iv St. Louis,MO,September. X.Wang,H.Qi,andS.S.Iyengar(2002). “Collaborative multi-modalitytargetclassifi- (cid:0) cationin distributed sensornetworks,” InternationalConference onInformationFusion, pp.285-290,Annapolis,MA,July. X. Wang, and H. Qi (2002). “Acoustic target classification using distributed sensor ar- (cid:0) rays,”, International Conference on Acoustics, Speech and Signal Processing, Orlando, FL,May. Y. Tian, H. Qi, and X. Wang (2002). “Target detection and classification using seismic (cid:0) signal processing in unattended ground sensor systems,” International Conference on Acoustics,SpeechandSignalProcessing, Orlando,FL,May. H. Qi, X. Wang, S. S. Iyengar, and K. Chakrabarty (2001). “Multisensor data fusion (cid:0) in distributed sensor networks using mobile agents,” Information Fusion, TuC2-11-16, Canada,August. v Abstract High-accuracy distributed information exploitation plays an important role in sensor net- works. This dissertation describes a mobile-agent-based framework for target detection and classificationinsensornetworks. Specifically, wetacklethechallengingproblemsofmultiple- targetdetection,high-fidelitytargetclassification,andunknown-target identification. Inthisdissertation,wepresentaprogressivemultiple-target detectionapproachtoestimate thenumberoftargetssequentiallyandimplementitusingamobile-agentframework. Tofurther improvetheperformance,wepresentacluster-based distributed approachwheretheestimated resultsfromdifferentclustersarefused. Experimentalresultsshow thatthedistributed scheme withtheBayesianfusionmethodhavebetterperformanceinthesensethattheyhavethehighest detectionprobabilityandthemoststableperformance. Inaddition,theprogressiveintra-cluster (cid:0)(cid:2)(cid:1)(cid:4)(cid:3)(cid:6)(cid:5)(cid:2)(cid:5)(cid:8)(cid:7) (cid:0)(cid:10)(cid:9)(cid:11)(cid:3)(cid:6)(cid:12)(cid:14)(cid:13)(cid:15)(cid:7) estimationcanreducedatatransmissionby andconserve energy by compared tothecentralizedscheme. Forcollaborative target classification,wedevelop ageneralpurposemulti-modality, multi- sensor fusion hierarchyfor informationintegration in sensor networks. The hierarchyis com- posed of four levels of enabling algorithms: local signal processing, temporal fusion, multi- modality fusion, and multi-sensor fusion using a mobile-agent-based framework. The fusion hierarchy ensures fault tolerance and thus generates robust results. In the meanwhile, it also takesintoaccountenergy efficiency. Experimentalresultsbasedontwofielddemosshowcon- stantimprovementofclassificationaccuracy overdifferentlevelsofthehierarchy. Unknowntargetidentificationinsensornetworkscorrespondstothecapabilityofdetecting targets without any a priori information, and of modifying the knowledge base dynamically. In this dissertation, we present a collaborative method to solve this problem among multiple (cid:0)(cid:11)(cid:16)(cid:17)(cid:7) sensors. When applied to the military vehicles data set collected in a field demo, about unknown target samples can be recognized correctly, while the known target classification ac- (cid:7) curacystaysabove (cid:18)(cid:2)(cid:19) . vi Contents 1 Introduction 1 1.1 SensorNetworks-StateoftheArt . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 PotentialsofSensorNetworks . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 ChallengesofSensorNetworks . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 ApplicationsofSensorNetworks . . . . . . . . . . . . . . . . . . . . 6 1.1.4 SensorNetworksinAction . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 SensorNodeArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 ProtocolStackofSensorNetworks . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.1 PhysicalLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.2 DataLinkLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.3 NetworkLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.4 TransportLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.5 ApplicationLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.6 PowerManagement,MobilityManagement,andTaskManagement . . 23 1.4 ComputingParadigmsofSensorNetworks . . . . . . . . . . . . . . . . . . . . 24 1.4.1 CentralizedClient/ServerModel . . . . . . . . . . . . . . . . . . . . . 24 1.4.2 DecentralizedPeer-to-PeerModel . . . . . . . . . . . . . . . . . . . . 25 1.4.3 Mobile-Agent-BasedComputingParadigm . . . . . . . . . . . . . . . 27 vii
Description: