ebook img

Higgs-Higgs Interaction. The One-Loop Amplitude in the Standard Model PDF

0.66 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Higgs-Higgs Interaction. The One-Loop Amplitude in the Standard Model

Higgs-Higgs Interaction. The One-Loop Amplitude in the Standard 6 Model ∗ 1 0 2 n Valeriy V. Dvoeglazov a J Universidad de Zacatecas 0 A.P. 636, Suc. 3 Cruces, Zacatecas 98068 Zac. M´exico 2 E-mail: valeri@fisica.uaz.edu.mx ] h p Received on: August 20, 2015 - p e h [ 1 Abstract v 3 The amplitude of Higgs-Higgs interaction is calculated in the 4 Standard Model in the framework of the Sirlin’s renormalization 7 5 scheme in the unitary gauge. The one-loop corrections for λ, the 0 constant of 4χ interaction are compared with the previous results of . 0 L. Durand et al. obtained on using the technique of the equivalence 1 theorem, and in the different gauges. 6 1 : v i X r a ∗The talk presented at the Meeting of the DPF of the APS, May 24-28, 2002, The College W&M, Williamsburg, VA, USA, May 26, 2002. Originally, it was on the web- site http://www.dpf2002.org/abstract display.cfm?abstractid=26, which was promised − to be permanently active. 1 1 Introduction. The Higgs sector of the electroweak theory attracts much attention because of its connection with the cornerstones of the theory. The search for Higgs scalars is included in most of the experimental programs of the newcoming and acting accelerators [1]. The Higgs particles are suggested to be found in the decays of different particles (Z0 bosons, heavy quarkoniums etc.) as well as in photon-photon interactions and gluon-gluon fusion. In connection with that, let us mention non-so-long-ago attempts to explain anomalous events seen at SpS as the manifestation of the bound state of two Higgs bosons, i. e. of Higgsonium [2]-[4] or that of the bound state of vector bo- son [5] in accordance with the Veltman paper, Ref. [6]. Nowadays, even after clarifying the experimental situation with these anomalous events, the interest in Higgsonium has still the rights for existence at least from the viewpoint of preparedness to new unexpected news from the experiment. The previous investigations of the problem of existence of two-Higgs bound states were based on the Born approximation of their interaction ampli- tude [2]-[4]. In the present paper we present the results of our calculation of the amplitude of Higgs-Higgs interaction up to the fourth order in the framework of the Standard Model (SM) of Weinberg, Salam and Glashow with one Higgs doublet. This problem is also of present interest since there is some relations with the idea that gauge vector bosons could originate from a strong interacting scalar sector of the electroweak theory [7]. The amplitude obtained in this paper could also be useful for the consideration of the problem of the unitarity limit (e. g., [8]). Moreover, information on the behaviour of the Higgs coupling constants at mass scale M would be also of interest. These are the reasons why we start a more complete study of the prob- lem of Higgs-Higgs interaction. To reduce the volume of the article we shall use the standard notation used in [9], dimensional regularization and the renormalization scheme on the mass shell, which is analogous to that suggested in [9, 10]. We also choose the unitary gauge (ξ → ∞, to avoid ghosts) and the parameters recommended by the Trieste conference [11], namely (e ,M ,M ,M ,m ). 0 W0 Z0 H0 f0 The Higgs sector of the Lagrangian of the SM with one Higgs field has 2 the following form, e. g. [12]:1 1 1 e L = − (∂ χ)2 − M2χ2 − (cid:88)m f¯fχ− 2 µ 2 χ 2M (1−R)1/2 f W f eM eM e2 − W W+W−χ− Z Z2χ− W+W−χ2 − (1−R)1/2 µ µ 2R1/2(1−R)1/2 µ 4(1−R) µ µ e2 eM2 e2M2 − Z2χ2 − χ χ3 − χ χ4, (1.1) 8R(1−R) µ 4M (1−R)1/2 32M2 (1−R) W W where e is the electron charge, M is the Higgs mass, M and M are the χ W Z masses of the vector bosons, m are the fermion masses, R = M2 /M2. f W Z Thepaperisorganizedasfollows. InSection2wepresenttheexpressions for the self-energy and vertex parts (see also calculations in details in [13]). The results of the calculation of the total Higgs-Higgs amplitude will be presented in Section 3. The Appendix contains the definitions of some integralsmetincalculations. Theirconnectionswiththeintegralscalculated in [14, 15] is given. 1It is possible to add the pseudoscalar fermionic interaction, ∼(1+b γ ). i 5 3 Table I. Coupling constants in the case of the Standard Model. (cid:113) fW − √1 g fWWZA ig2 R(1−R) 2 2 fZ −1gMZ fWχ −igM 4 MW W fA eQ fZχ −igMZ2 i MW fWWZ −gMW f2W2χ −ig2 MZ 2 fWWA e f2Z2χ −ig2MZ2 2M2 W f2W2Z −ig2MW2 fχ −i gmi MZ2 2MW f4W ig2 f3χ −i3gMχ2 2MW f2W2A −ie2 f4χ −i3g2Mχ2 4M2 W The Kobayashi-Maskawa K matrix, g = e/sinθ are used in the full ij W Lagrangian of the SM, 2P = −1+γ+ln(M2 /4πµ2) are used in the dimen- (cid:15) W sional regularization, γ is the Euler constant. 4 (cid:31) p q q (cid:31) (cid:31) 1 2 Figure 1: 2 Self-energy, vertex and box diagrams for the scalar boson. 2.1 Self-energy diagrams. Here they are: if4χ (cid:34) M2 (cid:35) Π = M2 2P −1+log χ . (2.2) 16π2 χ M2 W if2V2χ (cid:34) M2 (cid:35) Π = M2 6P −1+3log V . (2.3) 16π2 V M2 W if3χf3χ (cid:104) (cid:105) Π(q2) = 1 2 −2P −I (q2,M2,M2) . (2.4) 16π2 0 χ χ(cid:48) ifχfχ (cid:110)(cid:104) (cid:16) (cid:17) (cid:105) Π(q2) = 1 2 (1−b b ) q2 +2m2 +2m2 +(1+b b )2m m P+ 4π2 1 2 1 2 1 2 1 2 (cid:20)1 (cid:16) (cid:17) (cid:21) + (1−b b ) q2 +m2 +m2 +(1+b b )m m I (q2,m2,m2)+(2.5) 2 1 2 1 2 1 2 1 2 0 1 2 5 V p q q (cid:31) (cid:31) 1 2 Figure 2: (cid:31) p q q 1 2 p + q (cid:31) (cid:31) 1 2 0 (cid:31) Figure 3: 6 m 1 q 1 p 2 q p + q m 2 Figure 4: 1 (cid:32) m2 m2 q2(cid:33) 1 (cid:41) + (1−b b ) m2log 1 +m2log 2 + + (1+b b )m m . 2 1 2 1 M2 2 M2 2 2 1 2 1 2 W W ifVχfVχ (cid:40)(cid:34) q4 q2 (cid:35) Π(q2) = 1 2 − −3 −6 P− (2.6) 16π2 2M4 M2 V V (cid:32) q4 q2 (cid:33) q2 M2 q2 (cid:41) − + +3 I (q2,M2,M2)− log V + −2 . 4M4 M2 0 V V 2M2 M2 2M2 V V V W V In the framework of the SM with one Higgs doublet only we obtain ig2 (cid:40)(cid:34) 3 q4 q2 3 q2 q2 Πχ(q2) = M2 − −3 − + Trm2− 16π2 χ 4M2 M2 M2 2RM2 M2 M2 i W χ χ χ W χ 9 6 (cid:35) 3q4 − 3r −9r−1 − r−1 + Trm4 P +tadpoles+ + W W 2R Z M2 M2 i 4M2 M2 W χ W χ (cid:18)5 5 (cid:19) q2 21 9 9 3 (cid:32) q4 + + + r + r−1 + r−1 − r log r + + 2 4R M2 8 W 2 W 4R Z 2 W W 8M4 χ W 3 q2 9 (cid:33) 3q2 + + r−1log R− Trm2+ 4RM2 4R2 W 4M2 M2 i W W χ 7 V p q 1 2 q p + q (cid:31) (cid:31) 1 2 Figure 5: q2 m2 7 3 m2 + Trm2log i − Trm4 + Trm4log i − 2M2 M2 i M2 2M2 M2 i M2 M2 i M2 W χ W W χ W χ W (cid:32) q2 1 3M2 (cid:33) 1 − + + W L(q2,M2 ,M2 )− 8M2 2 2q2 M2 W W W χ (cid:32) q2 1 3M2(cid:33) 1 1 − + + Z L(q2,M2,M2)− (2.7) 16M2 4 4q2 RM2 Z Z Z χ 9 1 1 − r L(q2,M2,M2)− Trm2L(q2,m2,m2)+ 16 Wq2 χ χ 4M2 M2 i i i W χ (cid:41) 1 1 + Trm4L(q2,m2,m2) . M2 M2q2 i i i W χ The corresponding counterterms are δM2 ig2 (cid:40)(cid:34) 3 15 9 1 χ = Z −Z = 3+ − r −9r−1 − r−1 − Trm2+ M2 Mχ χ 16π2 2R 4 W W 2R Z M2 i χ W 6 (cid:35) Πχ(tadpoles) 5 5 27 9 9 + Trm4 P + − − + r + r−1 + r−1− M2 M2 i M2 2 4R 8 W 2 W 4R Z W χ χ 3 (cid:18)1 3 9 (cid:19) 3 − r log r + r − + r−1 log R+ Trm2− 2 W W 8 W 4R 4R Z 4M2 i W 8 1 m2 7 3 m2 − Trm2log i − Trm4 + Trm4log i + 2M2 i M2 2M2 M2 i M2 M2 i M2 W W W χ W χ W (cid:18)r 1 3 (cid:19) 1 + W − + r−1 L(−M2,M2 ,M2 )+ 8 2 2 W M2 χ W W χ (cid:18)r 1 3 (cid:19) 1 1 + Z − + r−1 L(−M2,M2,M2)+ (2.8) 16 4 4 Z RM2 χ Z Z χ 9 + L(−M2,M2,M2)+ 16M2 χ χ χ W (cid:41) 1 1 + Trm2L(−M2,m2,m2)− Trm4L(−M2,m2,m2) 4M2 M2 i χ i i M2 M4 i χ i i W χ W χ and ig2 (cid:40)(cid:34) 3 3 1 (cid:35) 3 3 Z −1 = −3− + r + Trm2 P + + +3r−1+ χ 16π2 2R 2 W M2 i 2 4R W W 3 (cid:18) 3 1 (cid:19) 1 1 m2 + r−1 + − r log R− Trm2 + Trm2log i − 2R Z 4R 4 W 4M2 i 2M2 i M2 W W W (cid:32) (cid:33) 2 1 1 3 1 − Trm4 + − r − L(−M2,M2 ,M2 )+ M2 M2 i 4 4 W r (r −4) M2 χ W W W χ W W χ (cid:32) (cid:33) 1 1 3 1 1 + − r − L(−M2,M2,M2)+ 8 8 Z 2r (r −4) RM2 χ Z Z Z Z χ 3 1 + L(−M2,M2,M2)− (2.9) 8M2 χ χ χ W (cid:41) 1 1 − Trm2L(−M2,m2,m2)− Trm4L(−M2,m2,m2) 4M2 M2 i χ i i 2M2 M4 i χ i i W χ W χ Consequently, ig2 Πren(q2) = Πχ(q2)−δM2 −(Z −1)(q2 +M2) = M2× χ χ χ 16π2 χ (cid:40)(cid:34) 3 q4 3 3 q2 (cid:35) 3q4 q4 × − − r − P + + log R+ 4M2 M2 4 W 2M2 4M2 M2 8M2 M2 W χ W W χ W χ q2 (cid:18) 1 3 (cid:19) q2 1 + 1+ −3r−1 − r−1 + log R+ r log R+ M2 2R W 2R Z 4M2 8 W χ W 9 1 3 3 (cid:32) q2 (cid:33) 1 + 1+ − r −3r−1 − r−1 − +1 Trm2+ 2R 4 W W 2R Z M2 2M2 i χ W (cid:32) q2 (cid:33) 2 (cid:32) q2 1 3M2 (cid:33) + +1 Trm4 − + + W × M2 M2 M2 i 8M2 2 2q2 χ W χ W 1 (cid:32) q2 1 3M2(cid:33) 1 1 × L(q2,M2 ,M2 )− + + Z L(q2,M2,M2)− M2 W W 16M2 4 4q2 RM2 Z Z χ Z χ 9 1 − r L(q2,M2,M2)+ Trm2L(q2,m2,m2)+ 16q2 W χ χ 4M2 M2 i i i W χ 1 1 (cid:32) q2 q2 3q2 + Trm4L(q2,m2,m2)+ − + − + M2 M2q2 i i i 4M2 4M2 M2r (r −4) W χ χ W χ W W (cid:33) 1 1 3 3 1 + + r − r−1 + L(−M2,M2 ,M2 )+ 4 8 W 2 W r (r −4) M2 χ W W W W χ (cid:32) q2 q2 3q2 1 1 3 + − + + + + r − r−1+ 8M2 8M2 M2r (r −4) 8 16 Z 4 Z χ Z χ Z Z (cid:33) 3 1 1 + L(−M2,M2,M2)− 2r (r −4) RM2 χ Z Z Z Z χ (cid:32) 3q2 15 (cid:33) 1 − + r L(−M2,M2,M2)+ 8M2 16 W M2 χ χ χ W χ q2 1 (cid:32) q2 (cid:33) + Trm2L(−M2,m2,m2)+ 3+ × 4M2 M4 i χ i i 2M2 M4 M2 W χ W χ χ (cid:111) × Trm4L(−M2,m2,m2) (2.10) i χ i i In this Section and in what follows r = M2/M2 , r = M2/M2, b are W χ W Z χ Z 1,2 constants defined by the strength of the Higgs -fermion pseudoscalar inter- action. 2 The form of the integral I (q2,M2,M2) is given in Appendix A. 0 1 2 2In the Standard Model they are equal to zero. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.