Table Of ContentHiddenOrderasaSourceofInterfaceSuperconductivity
Andreas Moor,1 Anatoly F. Volkov,1 and Konstantin B. Efetov1,2
1TheoretischePhysikIII,Ruhr-UniversitätBochum,D-44780Bochum,Germany
2NationalUniversityofScienceandTechnology“MISiS”,Moscow,119049,Russia
(Dated:February4,2015)
Interfacialsuperconductivityisobservedinavarietyofheterostructurescomposedofdifferentmaterials
includingsuperconductingandnonsuperconducting(atappropriatedopingandtemperatures)cuprates
andiron-basedpnictides. Theoriginofthissuperconductivityremainsinmanycasesunclear. Here,we
proposeageneralmechanismofinterfacialsuperconductivityforsystemswithcompetingorderparame-
5 ters. Weassumethatparameterscharacterizingthematerialallowformationofanotherorderlikecharge-
1 orspin-densitywavecompetingandprevailingsuperconductivityinthebulk(hiddensuperconductivity).
0 Diffusiveelectronscatteringontheinterfaceresultsinasuppressionofthisorderandreleasingthesuper-
2 conductivity. OurtheoryisbasedontheuseofGinzburg–Landauequationsapplicabletoabroadclass
ofsystems. Wedemonstratethatthelocalsuperconductivityappearsinthevicinityoftheinterfaceand
b
thespatialdependenceofthesuperconductingorderparameter∆(x)isdescribedbytheGross–Pitaevskii
e
F equation.Solvingthisequationweobtainquantizedvaluesoftemperatureanddopinglevelsatwhich∆(x)
appears. Remarkably,thelocalsuperconductivityshowsupeveninthecasewhentherivalorderisonly
3 slightlysuppressedandmayarisealsoonthesurfaceofthesample(surfacesuperconductivity).
]
PACSnumbers:74.70.Xa,74.62.Dh,74.20.De,74.78.Fk
n
o
c
- I. INTRODUCTION the superconducting OP may arise in these materials (see
r reviewsRefs.23–27)withtheamplitudesW and∆depend-
p
ingontemperatureanddoping. Theinterfacialsupercon-
u Interesting phenomena have been discovered few years
s ago in the study of superconductivity in different ma- ductivity in one of the Fe-based pnictides (CaFeAs doped
. withLa,Ce,ProrNd)wasobservedbyWeietal.28Whereas
t terials, especially in high-T superconductors—cuprates
a c the bulk critical temperature was equal to about 30 K, a
m and Fe-based pnictides. It turned out that the crit- small fraction of samples had a T (cid:39)49K. Even higher
ical temperature of the superconducting transition T c
- c T (cid:39)77K was achieved by a Chinese experimental group
d in heterostructures, e.g., in bilayers, is higher than the c
inanotherFe-basedmaterial(singleunit-cellFeSefilmson
n critical temperature T of bare films that can be even
o nonsuperconducting.1–c13 The authors of Ref. 14 (see also SrTiO3).29
c Ref. 9) studied bilayers consisting of two cuprates— Very encouraging for understanding the very nature of
[
overdoped (La2−xSrxCuO4 with x=0.35) and underdoped high-Tc superconductivityseemstobetheeffectofappar-
2 (0.1<x<0.12) cuprate films. The largest increase of T ent enhancement of superconducting transition tempera-
c
v wasabout11K—fromT =21Kinbareunderdopedfilms ture at the interface between an iron-based chalcogenide
c
5 to Tc=32K in bilayers. Moreover, superconductivity has superconductor (FeSe) and SrTiO3 used as substrate.30,31
0
beenobservedinbilayerscomposedofnonsuperconduct- This discovery questioned the role of phonons in bulk
5
2 ing materials, La2−xSrxCuO4 with x=0 (an insulator) and iron-based superconductors30 and confirmed the pres-
0 La2−xSrxCuO4 with x=0.45 (normal metal).2 The critical ence of the magnetic order (spin-density wave) as a key
. temperature reached 50 K. Further experimental studies ingredient for high-Tc superconductivity in iron-based
1 showedtheindependenceofthecriticaltransitiontemper- superconductors.31
0
5 atureinbilayersLa2−xSrxCuO4/La2SrCuO4onx inarather Rather actively the interface superconductivity is stud-
1 widedopinginterval(0.15<x<0.47).15 iedinheterostructuresLaAlO /SrTiO .1 Itisassumedthat
3 3
v: A slight increase of Tc has been measured also in an- atwo-dimensionalelectrongasisformedattheinterface.
i other high-Tc superconductor—YBa2Cu3O7 films covered Effectofanelectricfieldhasbeenemployedtoexplorethe
X byathinAgfilm.16 Afewdecadesago,asimilareffecthas phasediagramofLaAlO /SrTiO interface.3,4Asidefromsu-
3 3
r beenobservedinbilayerscomposedofconventionallow-Tc perconductivity, the phenomenon of ferromagnetism in-
a
superconductors and normal metals.17–19 These latter ex- ducedattheinterfaceofanoxideheterostructurehasbeen
periments were motivated by original Ginzburg’s ideas on observed recently.32,33 The review in Ref. 34 provides an
thepossibilitytogetasurfacesuperconductivitywithahigh excellent overview over the possible symmetries and de-
transitiontemperature.20,21 greesoffreedomofcorrelatedelectronsthatcanevolveat
Another high-T superconductors where an enhance- oxide interfaces. It includes, inter alia, superconductivity,
c
ment of superconductivity at the interface has been es- magnetism,ferroelectricity,andcharge-andspinordersas
tablishedaretheso-callediron-basedpnictidesdiscovered well. Moreover,ithasbeenfound,thatattheinterfacesbe-
in2008.22Inthistypeofsuperconductorscompetingorder tweenLaAlO andSrTiO , superconductivitycoexistswith
3 3
parameters(OP),magneticandsuperconducting, mayco- ferromagnetism,33,35–37asurprisingresultofferingapoten-
exist. Tobemoreexact, thespindensitywave(SDW)and tial for exotic superconducting phenomena due to highly
2
brokeninversionsymmetryoftheinterfaceandaferromag- tentialwellwhichalwayshasdiscreteenergylevels(oronly
neticbackground.36 onelevel).Inone-dimensionalcase(flatinterface)thelocal
Severaltheorieshavebeensuggestedtoexplainthephe- superconductivityarisesevenatarathersmallsuppression
nomenon of interface superconductivity. Some of them ofW.
consideranonuniformchargedistributionneartheinter- Note that stimulation of the bulk superconductivity by
face and use a phenomenological relation of T to this impurities in materials with two OPs was considered by
c
distribution.7,10,38 Different ideas have been used in other oneoftheauthorsalongtimeago.61Recently,theeffectof
theories,39 where bilayers composed of superconductors superconductivitystimulationbyimpuritiesinthebulkof
withdifferentratiooftheT andpairingstrengthwerecon- Fe-basedpnictideswithtwoOPshasbeenanalysedbyFern-
c
sideredanditwasassumedthatT issuppressedbyphase nadesetal. inRef.62. However,tothebestofourknowl-
c
fluctuations.Inthevicinityoftheinterfacetheroleofthese edge,therehasbeennostudyofthemechanismofthein-
fluctuationsisnotimportantascomparedtothebulkdue terfacesuperconductivitypresentedinthispaper.
tosuppressionoffluctuationsbytheproximityeffect.How- In Section II, the general nonhomogeneous Ginzburg–
ever,thissuggestioncannotexplaintheobservedindepen- Landauequationsdescribingtwocoupledorderparameters
denceofT onthedopinglevelx.Perhaps,thereisnosingle areintroduced. Inthehomogeneouscase, wederivecon-
c
mechanismresponsiblefortheinterfacesuperconductivity ditions for the coefficients in the Ginzburg–Landau equa-
becauseitwasobservedinquitedifferentmaterialsunder tionsthatshouldbefulfilledforobtainingoneofthepossi-
variousconditions. Theimportantingredientofthiseffect blethreephases: 1)puresuperconducting,2)purecharge-
is the presence of an interface or some sort of nonhomo- orspin-densitywave,3)amixedstate. Inthenonhomoge-
geneity. neous case, a solution of the Ginzburg–Landau equations
fortheorderparametersisobtained,wherebydetailedcal-
Inthispaperweproposeanewmechanismfortheinter-
culationsareshiftedtotheAppendix.InSectionIII,wedis-
face superconductivity. The proposed mechanism is very
cuss applicability of the theory to the case when the con-
robust and general being independent of the microscopic
stituentsoftheheterostructurearehigh-T cupratesoriron-
detailsofconsideredmaterials. Itisapplicabletoanyma- c
based pnictides. We propose also an experimental setup
terialswhere,alongsidewiththesuperconductingorderpa-
suitablefortestingourpredictions.Concluding,wediscuss
rameter(OP),anotherOPexists.Wedonotpretendtoapply
ourresultsinSectionIV.
ourtheorytoanysystemwheretheinterfacesuperconduc-
tivityoccurs, butweshowthatitcanbeusedtomaterials
inwhichtwoOPsmaypotentiallyexist. Asiswellknown,
II. GENERALCONSIDERATIONS
inhigh-T superconductors,animportantroleisplayedby
c
thecharge-orspin-ordering.23–27Incuprates,achargeden-
sitywave(CDW)hasbeenobservedrecentlyinnumerous A. Freeenergyandself-consistencyequations
experiments40–50 and discussed in Refs. 51–55. It may ex-
ist alongside with superconductivity, whereas in Fe-based WestartwiththeexpressionforthefreeenergyF fora
superconductors, the spin density wave is more impor- systemwithtwoorderparameters(OPs),∆andW. Inone-
tant.ThepresenceofthenonsuperconductingOPW (CDW dimensionalcase,i.e.,incaseofapreferreddirectionpro-
or SDW) changes such characteristics of superconducting videdbytheinterface,thefreeenergyisgivenby
stateasLondonpenetrationdepth,56–58 heatcapacity,59,60
etc. F=1(cid:90) dx(cid:183)ξ2(∆(cid:48))2−a ∆2+bs∆4+γ∆2W2+ (1)
We show that the presence of a ‘hidden’ OP ∆ in a het- 2 s s 2
epreorsctornudctuucrteivwitiythatWth(cid:54)=ei0nmtearfyalceeaadtttoemapppeeraartaunrecseTof>loTcca(lWsu)-, +ξ2w(W(cid:48))2−awW2+b2wW4(cid:184),
where T (W) is the critical temperature of the supercon-
c
ductingtransitionofbarefilmscomposingtheheterostruc- where ∆(cid:48) and W(cid:48) denote the spatial derivatives of cor-
ture which depends on the amplitude W. We consider a responding order parameters, and the coefficients ξ ,
s,w
heterostructure with an interface where W is locally sup- a ,b , andγareingeneralnotindependentandshow
s,w s,w
pressed. Thissuppressionmaybecausedbyanenhanced acomplicateddependenceondopingand/ortemperature,
impurityscatteringanddopinglevelinthevicinityofthein- andonthemeanfreepath.Thesecoefficientsarepresented
terface.Theenhancedimpurityscatteringcanbecausedby inSectionIIIforthecaseofcupratesandiron-basedpnic-
the interdiffusion of atoms and/or roughness of the inter- tides.
face. BothfactorssuppresstheCDWorSDW.Inthiscase, ThefreeenergyiswrittenintheGinzburg–Landauform
in a vicinity of the interface where W is suppressed, lo- of Eq. (1) in the vicinity of a critical temperature. How-
calsuperconductivityariseswith∆(x)decayingonachar- ever, the critical temperatures T of the transitions into
dw,s
acteristicscaleoftheorderofthesuperconductingcoher- astatewithafiniteW,respectively,∆maybequitediffer-
ence length ξ . Interestingly, the local superconductivity ent. Weassumethatthedopingleveldescribedbythepa-
s
occursat‘quantized’temperaturesbecausetheOP∆(x)is rameterµischoseninsuchaway(µ=µ ),thatthecritical
c
describedbythelinearizedGross–Pitaevskiiequation, i.e., temperatureT forthenon-superconductingOPW coin-
dw
by the Schrödinger equation with a one-dimensional po- cideswiththecriticaltemperatureofthesuperconducting
3
transition Ts. This is possible becauseTdw depends on µ, C. Nonhomogeneouscase
whereasT doesnot.Thus,thecoefficientsa andb de-
s s,w s,w
pendonthedifferencesη=(1−T/T ),δ[µ2]≡µ2−µ2,and
s c IncaseofheterostructureswheretheOPsdependonthe
onimpurityconcentrationn .
imp coordinatex,themostinterestingnontrivialsolutionofthe
ThevariationofFwithrespectto∆andW yieldstheself-
systemofequations(2)and(3)correspondstothosewhere
consistency(ortheGinzburg–Lanadau)equations the OPW goes to a finite valueW∞=W−∞ (an asymmet-
−ξ2∆(cid:48)(cid:48)+∆(cid:163)−a +b ∆2+γW2(cid:164)=0, (2) riccaseW∞(cid:54)=W−∞canbeconsideredanalogously)while∆
s s s vanishes at distances from the interface exceeding ξ . In
w
−ξ2wW(cid:48)(cid:48)+W(cid:163)−aw+bwW2+γ∆2(cid:164)=0, (3) otherwords,weconsiderthecasewhenthesystemisatthe
pointΓ farawayfromtheinterface. Weassumethatthe
W
whichrepresentthefoundationofourconsiderations. OPW(x)issuppressedneartheinterface,e.g.,duetoanen-
hancedimpurityscatteringinthevicinityoftheinterfaceor
diffusivescatteringontheinterface.Thediffusivescattering
B. Homogeneouscase maybecausedeitherbyinterdiffusionorinterfacerough-
nesses. Asisknown(seeRef.63andreferenceswithin),the
Equations(2)and(3)withoutthespatialderivativesyield criticaltemperatureT issuppressedbyimpurityscatter-
dw
different uniform solutions, i.e., three different points on ingwhilethecriticaltemperatureTsofthesuperconducting
the plane of order parameters (∆,W). We denote these transition is only weakly affected. The most essential de-
pointsby,respectively,Γ∆(where∆(cid:54)=0,W =0),ΓW (where pendenceofthecoefficientsas,wandbs,wonimpurityscat-
∆=0,W (cid:54)=0),andΓW∆ (where∆(cid:54)=0,W (cid:54)=0,i.e.,bothOPs teringistheoneofthecoefficientaw.
coexist),eachcorrespondingtoanextremumofthefreeen- Dopinglevelneartheinterfacealsomaybechangeddue
ergyfunctionalF(∆,W). Analyzingthesepointswedeter- tointerdiffusionofatoms. Anotherreasonforachangeof
minetheconditionsforaparticularpointtocorrespondto thecoefficientsintheGinzburg–Landauequationsisadif-
aminimum: ferent crystal symmetry at the interface. Such a mecha-
1. Γ∆,where∆=(cid:112)as/bs,correspondstoaminimumif nbeisemnocfoennshidaenrceeddfosurpceorncvoenndtuiocntiavlitlyowat-tTwinsubpoeurcnodnadriuecsthoarss
thesecondderivativesofF withrespectto∆andW c
inRef.64.Achangeintheenergyspectrumofcupratesnear
arepositive,implying
thesurfacehasbeencalculatedinRef.65. Thischangecan
alsoleadtoamodificationofcoefficientsintheGinzburg–
b >0, γa −a b >0. (4)
s s w s Landau equations or even to a surface superconductivity.
Itisworthnotingthatthepropertiesofsurfacesupercon-
Inparticular,thecoefficienta mustbepositive.
s
ductivityinsystemswithone(superconducting)OPinmag-
2. Γ ,whereW =(cid:112)a /b ,correspondstoaminimum neticfieldhavebeenstudiedtheoreticallyinRefs.66–69.
W w w
iftheconditions TheinterfacebehaviorofW canbemodeledviathespa-
tialdependenceofthecoefficienta ,i.e.,
w
b >0, γa −a b >0, (5)
w w s w
(cid:40)
−a , |x|<L,
arefulfilled. Inparticular,thecoefficientawmustbe aw(x)= a ,0 |x|>L, (8)
positive. w
3. ΓW∆, where ∆=(cid:112)(asbw−γaw)/D and whereL isacharacteristicwidthoftheregionwhereW is
W =(cid:112)(a b −γa )/D with D=b b −γ2, corre- suppressed.Theexpressionfora ispresentedinSectionIII
w s s s w 0
spondstoaminimumprovidedtheconditions for a particular case. Formula for a (x) at |x|>L implies
w
thattheamplitudeW±∞=(cid:112)aw/bwisthesameatx→±∞,
bs>0, bw>0, bsbw−γ2>0, (6) havingalowervalueattheinterfacex=0,seeFig.1(a).We
willshowthat,underthesecircumstances,asuperconduct-
aresatisfied. ItfollowsfromthedefinitionofD and ingOP∆arisesattheinterfacedecayingtozeroasx→∞.
theexpressionsfor∆andW thattheconditions Notethatinourpreviouspublication70weanalyzednon-
homogeneous solutions for the Ginzburg–Landau equa-
a b −γa >0, a b −γa >0, (7)
s w w w s s tions(topologicaldefects)assumingthatallthecoefficients
intheseequationsareconstant. Thefoundsolutionsmay
shouldbefulfilled.
correspondtometastablestateswithenergieshigherthan
Clearly, the latter inequalities (7) are incompatible with thatforanuniformsolution. Inthecaseconsideredhere,a
those in (4) and (5). This fact is evident from topolog- nonuniformsolutionfor∆(x)isenforcedbybuilt-indefect
ical arguments, namely, if the point ΓW∆ is a minimum describedbytheanon-constantcoefficientas(x).
ofF(∆,W),thenthepointsΓ∆andΓW canonlycorrespond InordertofindthespatialdependenceofW(x)and∆(x),
to a maximum or a saddle point of the free energy func- weassumethatthesuperconductingOP∆issmall. Then,
tional. inthemainapproximationtheequationforW acquiresthe
4
where ξ˜ =ξ (cid:112)b , E =a b −γa , U =γa , and
s s w s w w w
g=b b . Equation 12 has a form of the Gross–Pitaevskii
s w
equation.71,72 Solving this equation one can determine
the spatial dependence of the superconducting OP ∆.
The calculations in this case formally coincide with those
carried out in Ref. 70 if the interchange ∆↔W is done.
For completeness we repeat the steps one has to perform
seeking for a solution ∆(x). Assuming that ∆ is small, the
right-hand side of Eq. (12) can be neglected and we are
left with the linearized Gross–Pitaevskii equation, i.e., the
‘Schrödinger’ equation, which can be solved considering
theeigenvalueproblem
Lˆ∆ =E ∆ , (13)
n n n
where the operator Lˆ =−ξ˜2∂2 −Ucosh−2(κ x), and ∆
s xx w n
andE aretheeigenfunctionsandeigenvaluesofLˆ. The
n
solutions∆ correspondingtoadiscretespectrumofE can
n n
beexpressedintermsofhypergeometricfunctionsandthe
‘energy’levels(E <0)beinggivenby73
ξ˜2κ2 (cid:183) (cid:115) 4U (cid:184)2
E =− s w −(1+2n)+ 1+ . (14)
n 4 ξ˜2κ2
s w
Provided the inequality 4U/ξ˜2κ2 <8 is fulfilled, there is
s w
FIG.1. (Coloronline.) (a)Sketchofconsideredsystem. TheCDW onlyone‘energy’levelwithn=0andthecorrespondingso-
(orSDW)orderparameterW issuppressednearaninterfacebe- lution ∆ (x) has a form of a soliton. Otherwise there are
tweentwomaterialsinwhichsuperconductingorderparameter∆ 0
severalsolutionsdecayingfarawayfromtheinterfaceand
mayexistalongsideW. Thissuppressionleadstotheappearance correspondingtoE .
of interfacial superconductivity, which can be thus regarded as n
RepresentingtheOP∆closetoacertain‘energy’levelE
‘hidden’. (b)ThecaseofstrongsuppressionofW withsolutions n
of∆n(x)givenbyhypergeometricfunctions. Notethat∆0(x)has oasrt∆ho(xg)o=naclnt∆on∆(x()x+),δo∆nne(xo)bwtaiitnhsathsemcaolelfcfiocrierencttsiocn,δ∆n(x)
theshapeofasoliton,whereasothersolutionshavenodes. (c)In n n
thecaseofaweaksuppressionofW, onehasashallow‘poten- E−E
tial’inthe‘Schrödinger’equationandthereexistsonlyone‘en- c2= n , (15)
n g〈〈∆4(x)〉〉
ergy’levelgivenbyEq.(16). n
where 〈〈f(x)〉〉 = (cid:82)−∞∞dxf(x) (double angle brackets are
used to distinguish the notation from the averaging over
form
momentadirectionsintroducedinAppendixA).
−ξ2W(cid:48)(cid:48)+W(cid:163)−a (x)+b W2(cid:164)=0, (9) Note an important point. The condition E <0 that de-
w w w
terminestheappearanceoftheinterfacesuperconductivity
where aw(x) is given by Eq. (8). This equation can be coincideswiththecondition(5)thatprovidesthestability
solved exactly, but for simplicity we restrict ourselves to ofthestatewithW (cid:54)=0and∆=0inthebulk. Thismeans
the simp(cid:112)lest case of a narrow region of suppression, i.e., thatifanonsuperconductingstateinthebulkischaracter-
L(cid:191)ξw/ a0,thusobtainingthesolution izedbyanonzeroOPW,anysuppressionofW leadstothe
W(x)=W∞tanh(cid:163)κw(|x|+x0)(cid:164), (10) acopnpseiadrearnincegothfeloccaaslesuopfearscmonadlluscutpivpitrye.sWsioendeomfWon.stratethis
wheretheintegrationconstantx obeystheequation Weaksuppressio(cid:112)n,r (cid:192)1. Inthiscase,oneobtainsfrom
0
Eq.(11) x κ (cid:39)ln 2r andthespatialdependenceof∆(x)
0 w
sinh(2x0κw)=4ξ2wκw/a0L≡r, (11) isdeterminedbythe‘Schrödinger’equation.(12)withthe
withκ =ξ−1(cid:112)a /2. ‘potential’ Ucosh−2(κwx)→V(x)=1−tanh2(cid:163)κw(|x|+x0)(cid:164).
w w w In other words, the function ∆(x) is determined by the
Next,weconsiderseparatelythecasesofastrong[r (cid:191)1,
‘Schrödinger’equationthatprovidesthe‘energy’levelsina
cf. Fig. 1 (b)] and, respectively, weak [r (cid:192)1, cf. Fig. 1 (c)]
shallowpotentialwellV(x).Asiswellknown,73therealways
suppressionofW attheinterface.
existsasingle‘energy’level
Strong suppression, r (cid:191)1. In this case, the product
2x0κw(cid:39)r issmallandthequantityx0inEq.(10)canbene- E0=−J2/(2ξ˜s)2, (16)
glected.SubstitutingW(x)inthisapproximationintoEq.(2)
whereJ=〈〈V(x)〉〉=4κ−1exp(−2κ x ).Theamplitudec is
oneobtains w w 0 0
givenagainbyEq.(15)withn=0. Thismeansthatasuper-
ξ˜2∆(cid:48)(cid:48)+(cid:163)E+Ucosh−2(κ x)(cid:164)∆=g∆3, (12) conducting condensate with a small amplitude ∆(cid:39)T E ,
s w s 0
5
theequation(seeAppendixA)
〈2µ2s (µ )〉=ln(T /T ), (17)
c 1m c dw s
where the critical temperature T depends, generally
dw
speaking, on impurity concentration which is assumed to
besmallfarfromtheinterface.
Next,considertheregion|x|<L,wheretheimpurityscat-
teringisassumedtobestronger. Inthiscase,thetemper-
ature T (cid:39)T (cid:163)1−(4πT τ)−1(cid:164), where T is the crit-
dw dw0 dw0 dw0
ical temperature of the transition into a state with W (cid:54)=0
intheabsenceofimpuritiesandsuperconductivity,τ=l/v
FIG. 2. (Color online.) Sketch of temperature dependence of
theamplitudes∆ncorrespondingtodifferenteigenvaluesEn,see is the momentum relaxation time for intraband scatter-
Eq.(14).AtagiventemperatureT,thestatewiththelargest∆n,i.e., ing, and the mean free path l is assumed to be larger
thestate∆0,correspondstoaminimumofthefreeenergy. How- than v/Tdw0. One can easily show that, in this case,
ever,thetransitionsbetweendifferent∆narepossible a0=aw−(4πTdw0τ)−1,whereawisgivenbytheexpression
above.Providedtheconditiona (cid:191)(4πT τ)−1(cid:191)1isful-
w dw0
filled,thenthecoefficienta inEq.(8)ispositive(meaning
0
whereTs isthesuperconductingtransitiontemperaturein that−a0<0)andconsiderablyesceedsaw.
the bulk, necessarily arises at the interface as soon as the
competingOPisarbitrarilyweaklysuppressed.
Note that, in the case of a two-dimensional point de- B. Temperatureanddopingdependence
fectinsteadoftheinterface,|E |isanexponentiallysmall73
0
quantityand,therefore,theradiusofthedecayofthecon- Considering the expression (15) for the coefficients c ,
n
densateisexponentiallylarge. onecanseethatatsmalldifference|E−E |,theOP∆isalso
n
small. It turns to zero at certain temperatures or doping
levels,whereE(T ,µ )=E (T ,µ )holds,withE (T ,µ )
n m n n n n n n
III. APPLICATIONTOCUPRATESANDPNICTIDES given by Eq. (14) with coefficients expressed through the
microscopicparametersandthetemperature. InFig.2we
plotthetemperaturedependenceoftheamplitudes∆ cor-
A. Relationofcoefficientstomicroscopicparameters n
responding to different eigenvalues E . Clearly, when the
n
temperatureT becomeslowerthanthetemperatureT de-
0
Here, we present the expressions for the coefficients in terminedbyEq.(14),thesuperconductingOP∆ (x)arises
0
the Ginzburg–Landau expansion for the case of cuprates
at the interface with the amplitude increasing when T is
andiron-basedpnictides. lowered. ThetemperatureT islowerthanT (η>0), but,
0 s
AshasbeenshowninRef.74,themodelthathasbeende-
undercertainconditions,higherthanthetemperatureT at
b
velopedindetailinRefs.75–77forFe-basedpnictides(gen-
which the superconducting state becomes more favorable
erally, to two-band superconductors with an SDW), is ap- inthebulk.AtT <T ,anewbranch∆ (T)appears,etc.
1 1
plicabletoquasi-one-dimensionalsuperconductorswitha
TheminimaltemperatureT (ormaximaln )atwhich
n max
CDW,and,aftercertainmodification,alsotocuprates. the branch ∆ (T) appears, is determined by the condi-
First, we consider the region |x|>L and assume that (cid:113)nmax
tion 2n ≤ 1+4Uξ˜−2κ−2−1. It can be shown that at
theimpurityconcentrationinthisregionissmall, i.e., the max s w
mean free path l(cid:192)ξ . In the model of Refs. 75–77, the a given temperature T, the state with the largest ∆n, i.e.,
s,w thestate∆ ,correspondstoaminimumofthefreeenergy.
coefficients are related to the microscopic parameters of 0
the model via a =η, b (cid:39)1.05, a =η(1−β )−〈β δ[µ2]〉, However,thetransitionsbetweendifferent∆n arepossible
s s w 1 2
b =s , γ=s , where η=1−T/T and δ[µ2]=µ2−µ2 analogouslytotransitionsbetweenanovercooledstateand
w 3m 2m s c
withµbeingafunctionthatdescribesthecurvatureofthe equilibrium.
Fermisheetsofthequasi-one-dimensionalsuperconductor
oradeviationoftheaverageFermisurfacefromtheperfect
C. Interfacesuperconductingtransitiontemperature
circleiniron-basedsuperconductors,wherepartialnesting
betweentheellipticalelectronbandsandthecircularhole
bandsleadstotheformationofthespin-densitywave. The Ourconsiderationsconcernedthecasewhenthesystem
functions s2m, s3m and β1,2 (see Appendix A) depend on isatthepointΓW farawayfromtheinterface,i.e.,thecon-
thedimensionlesscriticalcurvaturem=µ /πT definedin ditions (5) are valid while the conditions (4) are violated.
c s
suchawaythatthecriticaltemperatureT oftheforma- Whenappliedtothecaseofquasione-dimensionalmate-
dw
tionoftheOPW equalsT ,whereT arethecriticaltem- rialswiththeCDWortomateriallikeiron-basedpnictides
s s,dw
peraturesforthetransitionintothe,correspondingly,super- withanSDW,theseconditionscanbepresentedintheform
conductingandCDWorSDWstateinabsenceofthecom-
petingorderanddoping. Thecriticalµ isdeterminedby A2η+B2δ[µ2]<0, A1η+B1δ[µ2]<0, s3m>0, (18)
c
6
where A1=s3m−s2m(1−β1), B1=s2mβ2, exists again at temperatures T <T∆, but this min-
A =s −s (1−β ), and B =1.05β if expressed via imum is global only at T <T , where the critical
2 2m 3 1 2 2 1pt
the microscopic parameters of the model. The coeffi- temperature T for the first-order phase transition
1pt
cients A1,2 and B1,2 depend on µ(µ0,µϕ) and may attain isdeterminedbytheequationF(aw/bw)=F(as/bs).
positiveornegativevalues(onlyB2 isapositivequantity). At T >Tdw, a uniform solution for W =(cid:112)aw/bw
If these coefficients are all positive, then this conditions arises, but it corresponds to a global minimum at
can be fulfilled provided δ[µ2]<0. Thus, we can rewrite T >T . Inthiscase,noregionofcoexistenceexists,
1pt
them as B2|δ[µ2]|>A2η and B1|δ[µ2]|>A1η. In terms of and at T =T1pt a first-order phase transition from
microscopicparametersthelattercanbewrittenas thesuperconductingstatetoastatewithW (cid:54)=0takes
place with increasing temperature, see Fig. 3 (b).
η<cµB1/A1≡1−T˜W, η<cµB2/A2≡1−T˜∆, (19) Now,ifT0asdeterminedbyEq.(14)correspondingto
n=0(thegroundstate)fallsintotheregionT <T ,
1pt s
wherecµ=|δ[µ2]|andweintroducedthe‘critical’tempera- which is possible if the difference T −T is pos-
s 1pt
turesT˜W,∆=TW,∆/(πTdw,s). itive and sufficiently large, then, at the interface,
Onecandistinguishtwofromthephysicalpointofview superconductivityisinduced.
differentcases:
a) The case T∆<TW is realized if the quantity
D≡A B −A B =s s −s2 >0 provided that A
1 2 2 1 3 3m 2m 1
and A arepositive. Inthiscase,thepuresupercon-
2
ducting state (minimum of the free energy at Γ∆) D. Experiments
existsattemperaturesT <T∆with∆2un=as/bs.Inthe
temperature range T∆<T <TW, a mixed state (the
state of coexistence) with ∆(cid:54)=0 and W (cid:54)=0 given by The obtained appearance of superconductivity (or en-
expressionsjustbeforeEq.(6)takesplace. AtT >T , hancementofthecriticaltransitiontemperature)atanin-
0
apureCDW-stateor,moregenerally,aW-stateoccurs terface between two materials in which, alongside super-
with W2 = a /b . In the interval T <T <T , conductivity, another exists and is energetically more fa-
un w w W 0
one has a surface (or interface superconductiv- vorable, may be realized in two prominent examples of
ity), where T is the temperature determined by such systems. One of them, the cuprates, show a charge-
0
Eq.(14)correspondington=0(thegroundstate). At density wave order alongside superconductivity40–50 In
T <T <T ,thesystemisnonsuperconductingwith thesematerials,anenhancementofsuperconductingtran-
0 dw
the OP W (cid:54)=0. In Fig. 3 (a) we show schematically sitiontemperaturehasbeenfoundinabilayerconstructed
the temperature dependence of ∆ and W and also ofLa1.65Sr0.35CuO4andLa1.875Ba0.125CuO4.9,14
the temperature range in which the local supercon- Superconductivity accompanied by a spin-density wave
ductivityexists. AttemperaturesTW,∆,second-order isknowntoexistintheiron-basedpnictides,wherethein-
phase transitions occur and the OPs ∆ and W arise terfacesuperconductivityisproposedtobethedrivingef-
continuously (see(cid:112)expressions for ∆(cid:112)and W before fectbehindthealmostdoublingofsuperconductingtransi-
Eq.(6)where∆∼ TW−T andW ∼ T−T∆). Note tiontemperatureinCaFe2As2.80,81
an obvious analogy with conventional second-
Unfortunately, there are no data on spatial dependence
type superconductors in a magnetic field H.78,79
oftheorderparameteraccompanyingsuperconductivityin
The quantities T∆,W are analogous to the critical these experiments, neither the spatial dependence of the
fields H [cf. Fig. 3 (c)] so that at T <T one
c1,c2 W superconductingorderparametershasbeeninvestigatedin
has a purely superconducting state (full expulsion
these experiments. Such a measurement would provide a
of the magnetic field), a mixed state in the interval
test of our theory, if charge- or spin-density wave would
TW <T <T∆(correspondingly,theAbrikosov’svortex havebeensuppressedneartheinterface.
state) and a surface or interface superconductivity
in the range T∆<T <T0 (correspondingly, in the Another interesting effect also serving as a test of our
range H <H<H ). At last, at T >T , one has a predictionsisrelatedtothefactthattheremightappeara
c2 c3 0
pureW-statewhichcorrespondstothenormalstate hysteretic behavior stemming from the presence of differ-
in conventional superconductors. Note that same ent‘energy’levels[seeEq.(14)]. Thisresultsinasequence
analysiscanbeperformedif,insteadoftemperature, of temperatures Tn at which ∆ formally vanishes but the
the doping (or curvature) given by cµ in Eq. (19) temperaturedependenceof∆isdeterminedbythehighest
is considered and one obtains the corresponding temperature of them all, i.e., by T0 since the minimum of
situationasdepictedinFig.3(d). thefreeenergyisdeepesthere. Interestingly, atatemper-
atureT alocalminimumofthefreeenergyispresentand
n
b) The case T∆>TW is realized if the quantity adjusting∆bymeans,e.g.,ofanexternalfield,onecanlet
D≡A B −A B =s s −s2 <0 provided that A itfollowthetemperaturedependenceof∆ aftertherelax-
1 2 2 1 3 3m 2m 1 n
and A arepositive. Inthiscase,thepuresupercon- ationofexternalconstrains,so,indeed,“there’salotofroom
2
ducting state (minimum of the free energy at Γ∆) fornewcombinations”.80
7
in a system with two OPs may be responsible for the in-
terface superconductivity observed in many materials in-
cludingcupratesandiron-basedpnictides. Asisfirmlyes-
tablished, in cuprates and iron-based pnictides, CDW (or
quadrupolechargeorder82)orSDWcanexistalongsidewith
superconductivity.
We found that in case of a strong suppression of W at
some point, there are several solutions for the supercon-
ducting OP ∆(x) which are localized on the scale of the
coherence length ξ . These solutions are found from the
s
nonlinearSchrödingerequation(orGross–Pitaevskiiequa-
tion)andcorrespondtodifferent‘energy’levels.Eachsolu-
tionarisesatcertainvaluesoftemperaturesT (ordoping
n
levelµ )andhasadifferentformchangingfromasoliton-
n
likeonetoanoscillatoryfunctiondecayingatinfinity.How-
ever, only the soliton-like solution ∆ (x) corresponds to a
0
minimum of the free energy. Other solutions ∆ (x) (with
n
n(cid:54)=0)withnodeshavehigherenergies.Theycorrespondto
metastablestates.IfthecorrespondingpotentialV(x)inthe
Schrödingerequationisnotdeepenough,thereisonlyone
FIG. 3. (Color online.) (a) In the case T∆<TW, three ranges ‘energy’levelandonlyonesoliton-likesolutionfor∆(x).
of temperature. For T<T∆, the system is in a pure supercon- InthecaseofanasymmetricpotentialV(x),thelocalized
ductingstate, whereasinthetemperaturerangeT∆<T<TW, a solution for ∆(x) exists provided that the potential well is
mixedstate(thestateofcoexistence)with∆(cid:54)=0andW (cid:54)=0isreal-
deepenough.73IfforsomereasonstheOPW issuppressed
ized. Thus,thebulksuperconductingtransitiontemperaturecor-
atthesurface,thesolutionsfor∆(x)havethesameformas
riseswpiodnednsedto(eTnWha.nTchemeteenmtpofersautpuerrecoranndguecotifvitthye)ocnoeaxpispteeanrcaenscteaotef incaseofthesymmetricV(x)andsurfacesuperconductiv-
the interface superconductivity with the highest transition tem- ityarisesinthesample. Noteanimportantpoint. Thelo-
peratureT0(theremaybeothertransitiontemperaturesTn). Fi- calsuperconductivitymayariseinone-ortwo-dimensional
nally,forT>T0,thesystemisinapureW-state(CDWorSDW) cases (a flat interface or a point defect) if the suppression
up to its transition into the normal state at Tdw. (b) In case oftheOPW issmall. Thismeansthateveniftheminimal
T∆>TW,thesystemmaybeineitherthepuresuperconducting valueofW(x)correspondstoaminimumofthefreeenergy
orinthepureW-state. Thetransitionfromoneintoanotheris
in an uniform case, in a nonuniform case local supercon-
of the first order at a temperature T1pt. If T0 falls into the re- ductivitywouldariseattheinterfaceoratthesurface.
gionT1pt<Ts,whichispossibleifthedifferenceTs−T1ptispos- Thedevelopedtheoryisabletoexplaintheemergentor
itive and sufficiently large, then, at the interface, superconduc-
enhanced interface superconductivity in some cuprate or
tivityisinduced. (c)Ananalogywithconventionalsecond-type
superconductorsinamagneticfield H issketched. Thequanti- iron-basedpnictideheterostructures. Thepredictionscan
tiesT∆,W andT0areanalogoustothecriticalfieldsHc1,c2andHc3, betestedinfurtherexperiments.
respectively, i.e., up to Hc1 the system is in a purely supercon- Remarkable, the used approach based on the consider-
ducting state (full expulsion of the magnetic field), in a mixed ation of Ginzburg–Landau equations for two coupled or-
stateintheintervalHc1<H<Hc2,andintheAbrikosov’svortex derparametersdoesnotdependonthenatureoforderde-
stateforHc2<H<Hc3loosingthesuperconductingpropertiesfor scribedbythose.Theobtainedresultsarealsoapplicableto
H>Hc3.(d)If,insteadoftemperature,thedoping(orcurvature)µ descriptionofanarbitrary‘hidden’orderevolvingatthein-
isconsidered, thesituationissimilartothetemperaturedepen-
terface,e.g.,theferromagnetisminducedattheinterfaceof
dence.
anoxideheterostructureobservedrecently.32
Notethatlocalizedsuperconductivitymayarisealsoina
homogeneous sample if a nonuniformW(x) state (for ex-
IV. DISCUSSION ample, stripes) is energetically favorable due to an inter-
nalmechanism(e.g.,theLarkin–Ovchinnikov–Fulde–Ferrel
mechanism).83,84Analysisofthisstatewithtwocompeting
WehavestudiedasystemwithtwocompetingOPsoneof
whichisthesuperconductingOP∆andanother,W,canbe orderparametersdeservesaseparateconsideration.85
theamplitudeofthecharge-orspin-densitywave. Onthe
basis of Ginzburg–Landau equations we have shown that
if the temperature and doping are chosen in such a way ACKNOWLEDGMENTS
thatthestatewithW (cid:54)=0and∆=0isfavorable,i.e.,itcor-
responds to a minimum of the free energy in the bulk of WeappreciatethefinancialsupportfromtheDFGviathe
the sample, an arbitrary small suppression ofW at an in- ProjektEF11/8-1;K.B.E.gratefullyacknowledgesthefinan-
terface or a defect leads to the appearance of local super- cialsupportoftheMinistryofEducationandScienceofthe
conductivity. This mechanism of local superconductivity RussianFederationintheframeworkofIncreaseCompet-
8
itivenessProgramofNUST“MISiS”(Nr.K2-2014-015). We with∆(cid:48)andW(cid:48)aswellas∆(cid:48)(cid:48)andW(cid:48)(cid:48)denotingthefirstand
thankProf.Dr.I.Ereminforusefulcommentsandvaluable second derivatives with respect to x, respectively. These
discussions. equationsdetermineextremaofthefreeenergyfunctional
[cf.Eq.(1)]
AppendixA:Dopingdependenceofthecoefficientsin F=1(cid:90) dx(cid:183)ξ2(∆(cid:48))2−a ∆2+bs∆4+γ∆2W2+ (A6)
Ginzburg–Landauequations 2 s s 2
(cid:184)
+ξ2(W(cid:48))2−a W2+bwW4 ,
In the notation of Refs. 75–77, the Ginzburg–Landau w w 2
equationshavetheform
withrespectto∆andW,andthecorrespondingcoefficients
−ξ2∇2∆+∆(cid:163)W2s +∆2s −ln(T /T)(cid:164)=0,
s 2m 3 s of the G–L expansion are related to variables in Eqs. (A1)
(A1) and(A2)viaa =η,b =s (cid:39)1.05,a =η(1−β )−〈β δ[µ2]〉,
s s 3 w 1 2
−ξ2w∇2W+W(cid:163)〈2µ2s1m〉+W2s3m+∆2s2m−ln(Tdw/T)(cid:164)=0, bw=s3m, γ=s2m, whereη=1−T/Ts. Theexpressionsfor
(A2) thecoefficientsintermsofthemicroscopicparametersof
themodelforcupratesandiron-basedpnictidesaregiven
whereξ arethecoherencelengths(atlowtemperatures)
s,w asfollows:
for ∆ and W, respectively, and T are, respectively, the
s,dw
∞
criticaltemperaturesforthetransitionintothepuresuper- s = (cid:88)(2n+1)−3, (A7)
conducting state or into a state with a CDW or an SDW 3
n=0
othnelyt.ranInsitoiothneirnwtootrhdes,chTadwrgeis-otrhdeercerditsictaatleteinmapbesreantucereoffo∆r s1m= (cid:88)∞ (2n+1)−1(cid:163)(2n+1)2t2+m2(cid:164)−1, (A8)
andµ, whileT isthe superconductingtransitiontemper- n=0
s
∞
ature in absence of W. The angle brackets mean the an- s = (cid:88)(cid:173)(cid:163)(2n+1)2−m2(cid:164)(2n+1)−1(cid:163)(2n+1)2+m2(cid:164)−2(cid:174),
2m
gle averaging (in Fe-based pnictides) or integration along n=0
thesheetsoftheFermisurfacesinquasi-one-dimensional (A9)
superconductors. The functions s1m, s2m, etc. are func- ∞
tions of the normalized curvature m=µ/(πT ), where s = (cid:88)(cid:173)(2n+1)(cid:163)(2n+1)2−3m2(cid:164)(cid:163)(2n+1)2+m2(cid:164)−3(cid:174),
s 3m
µ=µ0+µϕcos(cid:163)(p2y+pz2)1/2a(cid:164) is a curvature in quasi-one- n=0
(A10)
dimensional superconductors with a doping-dependent
valueofµ0.ItisassumedthattheFermisurfaceofthesesu- β = (cid:88)∞ (cid:173)4m2(2n+1)(cid:163)(2n+1)2+m2(cid:164)−2(cid:174), (A11)
perconductorsconsistsoftwoslightlycurvedsheetswhich 1
n=0
are perpendicular to the x axis74. In the case of Fe-based ∞
pnictides,µ=µ0+µϕcos(2ϕ)isaquantitythatdescribesan β2= (cid:88)2(2n+1)−1(cid:163)(2n+1)2+m2(cid:164)−1, (A12)
elliptic(µϕ(cid:54)=0)andcircular(µϕ=0)Fermisurfacesofelec- n=0
tronandholebands.75–77 Allquantities—∆,W andµ—are wheret=T/T ,theanglebrackets〈...〉denotetheangleav-
measured in units of πT . The expressions for the coeffi- s
s eraging (in iron-based pnictides) or integration along the
cientsintheG–Lexpansionwithaccountforimpurityscat-
sheetsoftheFermisurfaces(inquasi-one-dimensionalsu-
teringhavebeencalculatedinRef.86.
perconductorsorcuprates).
Replacing the derivative ∇→∇−i2πA/Φ , one can use
0
Eqs.(A1)and(A2)todescribevorticesinsuperconductors
withaCDW,87whereΦ0isthemagneticfluxquantum. AppendixB:DetailsonsolutionoftheGross–Pitaevskiiequation
As it is seen from Eq. (A2), the critical temperature T
dw
depends on doping, i.e., on the parameter µ. We choose
HerewesketchthesolutionoftheGross-Pitaevskiiequa-
thisparameterµ=µcinsuchawaythatTdw(µc)=Ts. This tion for ∆. In zero-order approximation we obtain for ∆
meansthatatT =T ,thequantities∆=W =0,and,thus,µ 0
s c fromEq.(12)
obeystheequation
〈2µ2s (µ )〉=ln(T /T ), (A3) ξ˜2∆∆(cid:48)0(cid:48)+∆0(cid:163)E+Ucosh−2(κwx)(cid:164)=0. (B1)
c 1m c dw s
where µc is a function of two parameters, Thisequationisintegrableanditssolutionsψncorrespond-
i.e.,µc=µc(µ0,µϕ). ingtoadiscretespectrumofEn areexpressedintermsof
Then, we expand the function s (µ,T) in the de- hypergeometricfunctions73. Inournotations,the‘energy’
1m
viations δ[µ2]=µ2−µ2 and δT =T −T, thus obtaining levelsofdiscretespectrumaregivenby73
c s
s (µ,T)=s (µ ,T )+β δT+〈β δ[µ2]〉,anduseEq.(A3)
to1mobtain equ1matiocnssin a g1eneral s2tandard form (assuming E =−ξ˜2sκ2w(cid:183)−(1+2n)+(cid:115)1+ 4U (cid:184)2. (B2)
thatallthefunctionsdependonlyononecoordinatex), n 4 ξ˜2κ2
s w
−ξ2∆(cid:48)(cid:48)+∆(cid:163)−a +b ∆2+γW2(cid:164)=0, (A4)
s s s and their maximal number nmax is determined by
−ξ2wW(cid:48)(cid:48)+W(cid:163)−aw+bwW2+γ∆2(cid:164)=0, (A5) 2nmax≤(cid:113)1+4Uξ˜−s2κ−w2−1.
9
We expand the correction δ∆ to the zero-order solu- with R=g∆3+(E−E )∆ and represent ∆ as
N
tion∆ intermsofthenormalizedeigenfunctions∆ ≡ψ ∆(x)=c ψ (x)+δ∆ (x), where δ∆ (x)=(cid:80)(cid:48) c ψ (x),
0 n n N N N N n N,n n
oftheoperatorLˆ =−ξ˜2∂2 −Ucosh−2(κ x). Thesefunc- andthesummationrunsoveralln exceptthetermn=N.
s xx w
tionsobeytheequation Wesubstitutethis∆(x)intoEq.(B4)andmultiplythisequa-
tionfirstbyψ andthenbyψ withn(cid:54)=N,thenintegrating
N n
Lˆψ =E ψ . (B3) the obtained result each time over x. Thus, taking into
n n n
account the orthogonality of different eigenfunctions, we
findthecoefficientsc
n
SolutionsofEq.(12)canbewrittenexplicitlyifthequan-
E−E
tityE =E(η,δ[µ2])isclosetoacertain‘energy’levelEn,say c2 = N , (B5)
to E , such that E (cid:39)E =E(η ,δ[µ2 ]) (if considering the N g〈〈ψ4 〉〉
N N N N N
model for cuprates or iron-based pnictides, the ‘tempera- 〈〈ψ3 ψ 〉〉
ture’ηordopingδ[µ2]shouldbechosenproperly).Wewrite c =gc3 N n withn(cid:54)=N, (B6)
N,n N E −E
Eq.(12)intheform n N
where 〈〈f(x)〉〉 = (cid:82)−∞∞dxf(x). Obviously, in Eq. (B6), ψn
Lˆ∆=E ∆+R(∆), (B4) andψ havetohavesameparity(bothevenorbothodd).
N N
1 N.Reyren,S.Thiel,A.D.Caviglia,L.F.Kourkoutis,G.Hammerl, Physics2,121(2011).
C.Richter,C.W.Schneider,T.Kopp,A.-S.Rüetschi,D.Jaccard, 25 P.J.Hirschfeld,M.M.Korshunov, andI.I.Mazin,Reportson
M.Gabay,D.A.Muller,J.-M.Triscone,andJ.Mannhart,Science ProgressinPhysics74,124508(2011).
317,1196(2007). 26 M.R.Norman,Physics1,21(2008).
2 A.Gozar,G.Logvenov,L.F.Kourkoutis,A.T.Bollinger,L.A.Gi- 27 A.Chubukov,AnnualReviewofCondensedMatterPhysics3,57
annuzzi,D.A.Muller, andI.Bozovic,Nature455,782(2008). (2012).
3 A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schnei- 28 F.Y.Wei,B.Lv,L.Z.Deng,J.K.Meen,Y.Y.Xue, andC.W.Chu,
der, M.Gabay, S.Thiel, G.Hammerl, J.Mannhart, andJ.-M. ArXive-prints (2013),arXiv:1309.0034[cond-mat.supr-con].
Triscone,Nature456,624(2008). 29 W. Qing-Yan, L.Zhi, Z.Wen-Hao, Z.Zuo-Cheng, Z.Jin-Song,
4 C.Bell,S.Harashima,Y.Kozuka,M.Kim,B.G.Kim,Y.Hikita, L.Wei,D.Hao,O.Yun-Bo,D.Peng,C.Kai,W.Jing,S.Can-Li,
andH.Y.Hwang,Phys.Rev.Lett.103,226802(2009). H.Ke,J.Jin-Feng,J.Shuai-Hua,W.Ya-Yu,W.Li-Li,C.Xi,M.Xu-
5 Y.Kozuka,M.Kim,C.Bell,B.G.Kim,Y.Hikita, andH.Y.Hwang, Cun, andX.Qi-Kun,ChinesePhysicsLetters29,037402(2012).
Nature462,487(2009). 30 Y.-Y.Xiang,F.Wang,D.Wang,Q.-H.Wang, andD.-H.Lee,Phys.
6 J.Biscaras,N.Bergeal,A.Kushwaha,T.Wolf,A.Rastogi,R.Bud- Rev.B86,134508(2012).
hani, andJ.Lesueur,Nat.Commun.1,89(2010). 31 S.Tan,Y.Zhang,M.Xia,Z.Ye,F.Chen,X.Xie,R.Peng,D.Xu,
7 G.Logvenov,A.Gozar, andI.Bozovic,Science326,699(2009). Q.Fan,H.Xu,J.Jiang,T.Zhang,X.Lai,T.Xiang,J.Hu,B.Xie,
8 S.Smadici, J.C.T.Lee, S.Wang, P.Abbamonte, G.Logvenov, andD.Feng,Nat.Mater.12,634(2013).
A.Gozar, C.D.Cavellin, andI.Bozovic,Phys.Rev.Lett.102, 32 M. Salluzzo, S. Gariglio, D. Stornaiuolo, V. Sessi, S. Rusponi,
107004(2009). C. Piamonteze, G. M. De Luca, M. Minola, D. Marré,
9 G.KorenandO.Millo,Phys.Rev.B81,134516(2010). A.Gadaleta,H.Brune,F.Nolting,N.B.Brookes, andG.Ghir-
10 V.M.LoktevandY.G.Pogorelov,Phys.Rev.B78,180501(2008). inghelli,Phys.Rev.Lett.111,087204(2013).
11 V.Y.Butko,G.Logvenov,N.Bozovic,Z.Radovic, andI.Bozovic, 33 L.Li,C.Richter,J.Mannhart, andR.C.Ashoori,Nat.Phys.7,
AdvancedMaterials21,3644(2009). 762(2011).
12 D.L.BergmanandT.Pereg-Barnea,Materials4,1835(2011). 34 H.Y.Hwang,Y.Iwasa,M.Kawasaki,B.Keimer,N.Nagaosa, and
13 J.Pereiro,A.Petrovic,C.Panagopoulos, andI.Bozovic,Phys. Y.Tokura,Nat.Mater.11,103(2012).
Express1,208(2011). 35 D.A.Dikin,M.Mehta,C.W.Bark,C.M.Folkman,C.B.Eom,
14 O.Yuli,I.Asulin,O.Millo,D.Orgad,L.Iomin, andG.Koren, andV.Chandrasekhar,Phys.Rev.Lett.107,056802(2011).
Phys.Rev.Lett.101,057005(2008). 36 J.A.Bert,B.Kalisky,C.Bell,M.Kim,Y.Hikita,H.Y.Hwang, and
15 J.Wu,O.Pelleg,G.Logvenov,A.T.Bollinger,G.S.Sun,Y-J.and- K.A.Moler,Nat.Phys.7,767(2011).
Boebinger,M.Vanevic,Z.Radovic, andI.Bozovic,Nat.Mater. 37 L.Fidkowski,H.-C.Jiang,R.M.Lutchyn, andC.Nayak,Phys.
12,877(2013). Rev.B87,014436(2013).
16 S.Tinchev,PhysicaC:Superconductivity470,626 (2010). 38 V.M.LoktevandY.G.Pogorelov,Phys.Rev.B83,132505(2011).
17 W.RÃijhl,ZeitschriftfÃijrPhysik186,190(1965). 39 E.Berg,D.Orgad, andS.A.Kivelson,Phys.Rev.B78,094509
18 D.Naugle,PhysicsLettersA25,688 (1967). (2008).
19 M.Strongin,O.F.Kammerer,J.E.Crow,R.D.Parks,D.H.Dou- 40 M.J.Lawler,K.Fujita,J.Lee,A.R.Schmidt,Y.Kohsaka,C.K.
glass, andM.A.Jensen,Phys.Rev.Lett.21,1320(1968). Kim,H.Eisaki,J.C.Uchida,S.and-Davis,J.P.Sethna, andE.-A.
20 V.Ginzburg,PhysicsLetters13,101 (1964). Kim,Nature466,347(2010).
21 D.Allender,J.Bray, andJ.Bardeen,Phys.Rev.B7,1020(1973). 41 C.V.Parker,P.Aynajian,E.H.daSilvaNeto,A.Pushp,S.Ono,
22 Y.Kamihara,T.Watanabe,M.Hirano, andH.Hosono,Journal J.Wen,Z.Xu,G.Gu, andA.Yazdani,Nature468,677(2010).
oftheAmericanChemicalSociety130,3296(2008). 42 T.Wu,H.Mayaffre,S.Kramer,M.Horvatic,C.Berthier,W.N.
23 G.R.Stewart,Rev.Mod.Phys.83,1589(2011). Hardy,R.Liang,D.A.Bonn, andM.-H.Julien,Nature477,191
24 H.-H. Wen and S. Li, Annual Review of Condensed Matter (2011).
10
43 T.Wu,H.Mayaffre,S.KrÃd’mer,M.Horvatic,C.Berthier,P.L. Phys.Rev.B89,144503(2014).
Kuhns,A.P.Reyes,R.Liang,W.N.Hardy,D.A.Bonn, andM.-H. 61 K.B.Efetov,Sov.Phys.JETP54,1198(1981).
Julien,Nat.Commun.4,2113(2013). 62 R.M.Fernandes,M.G.Vavilov, andA.V.Chubukov,Phys.Rev.
44 G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, B85,140512(2012).
C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G. 63 L.N.Bulaevskii,SovietPhysicsUspekhi18,131(1975).
Hawthorn,F.He,T.Loew,M.M.Sala,D.C.Peets,M.Salluzzo, 64 I. Khlyustikov and A. Buzdin, Advances in Physics 36, 271
E.Schierle,R.Sutarto,G.A.Sawatzky,E.Weschke,B.Keimer, (1987).
andL.Braicovich,Science337,821(2012). 65 H. Eschrig, A. Lankau, and K. Koepernik, Phys. Rev. B 81,
45 J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, 155447(2010).
J.Larsen, J.Mesot, R.Liang, D.A.Bonn, W.N.Hardy, A.Wa- 66 V.BarzykinandL.Gor’kov,Phys.Rev.Lett.89,227002(2002).
tenphul,M.v.Zimmermann,E.M.Forgan, andS.M.Hayden, 67 D.Agterberg,PhysicaC:Superconductivity387,13(2003),pro-
Nat.Phys.8,871(2012). ceedingsofthe3rdPolish-USWorkshoponSuperconductivity
46 A. Achkar, R. Sutarto, X. Mao, F. He, A. Frano, S. Blanco- andMagnetismofAdvancedMaterials.
Canosa, M. Le Tacon, G. Ghiringhelli, L. Braicovich, M. Mi- 68 O.DimitrovaandM.Feigel’man,Phys.Rev.B76,014522(2007).
nola,M.MorettiSala,C.Mazzoli,R.Liang,D.Bonn,W.Hardy, 69 D. F. Agterberg, E. Babaev, and J. Garaud, Phys. Rev. B 90,
B.Keimer,G.Sawatzky, andD.Hawthorn,Phys.Rev.Lett.109, 064509(2014).
167001(2012). 70 A.Moor,A.F.Volkov, andK.B.Efetov,Phys.Rev.B90,224512
47 D.LeBoeuf,S.Kramer,W.N.Hardy,R.Liang,D.A.Bonn, and (2014).
C.Proust,Nat.Phys.9,79(2012). 71 E.Gross,IlNuovoCimentoSeries1020,454(1961).
48 E.Blackburn,J.Chang,M.Hücker,A.Holmes,N.Christensen, 72 L.P.Pitaevskii,Sov.Phys.JETP13,451(1961).
R.Liang,D.Bonn,W.Hardy,U.Rütt,O.Gutowski,M.Zimmer- 73 L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd
mann,E.Forgan, andS.Hayden,Phys.Rev.Lett.110,137004 ed., Course of Theoretical Physics, Vol. III (Butterworth-
(2013). Heinemann,Oxford,1977).
49 R.Comin,A.Frano,M.M.Yee,Y.Yoshida,H.Eisaki,E.Schierle, 74 A.Moor,P.A.Volkov,A.F.Volkov, andK.B.Efetov,Phys.Rev.B
E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Y. He, 90,024511(2014).
M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A. Sawatzky, 75 M.G.Vavilov,A.V.Chubukov, andA.B.Vorontsov,Supercon-
B.Keimer, andA.Damascelli,Science343,390(2014). ductorScienceandTechnology23,054011(2010).
50 K.Fujita,M.H.Hamidian,S.D.Edkins,C.K.Kim,Y.Kohsaka, 76 A.B.Vorontsov,M.G.Vavilov, andA.V.Chubukov,Phys.Rev.B
M.Azuma,M.Takano,H.Takagi,H.Eisaki,S.-i.Uchida,A.Al- 81,174538(2010).
lais, M. J. Lawler, E.-A. Kim, S. Sachdev, and J. C. S. Davis, 77 R. M. Fernandes and J. Schmalian, Phys. Rev. B 82, 014521
ProceedingsoftheNationalAcademyofSciences111,E3026 (2010).
(2014). 78 A.A.Abrikosov,FundamentalsoftheTheoryofMetals,Funda-
51 M.VojtaandO.Rösch,Phys.Rev.B77,094504(2008). mentalsoftheTheoryofMetals(North-Holland,1988).
52 M.A.MetlitskiandS.Sachdev,Phys.Rev.B82,075128(2010). 79 P. G. De Gennes, Superconductivity of Metals and Alloys, Ad-
53 S.SachdevandR.LaPlaca,Phys.Rev.Lett.111,027202(2013). vancedBooksClassicsSeries(WestviewPress,1999).
54 H.Meier,C.Pépin,M.Einenkel, andK.B.Efetov,Phys.Rev.B 80 E.S.Reich,Nature501,474(2013).
89,195115(2014). 81 F.Y.Wei,B.Lv,L.Z.Deng,J.K.Meen,Y.Y.Xue, andC.W.Chu,
55 Y.WangandA.Chubukov,Phys.Rev.B90,035149(2014). ArXive-prints (2013),arXiv:1309.0034[cond-mat.supr-con].
56 K.Hashimoto,K.Cho,T.Shibauchi,S.Kasahara,Y.Mizukami, 82 K.B.Efetov,H.Meier, andC.Pépin,Nat.Phys.9,442(2013).
R. Katsumata, Y. Tsuruhara, T. Terashima, H. Ikeda, M. A. 83 A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762
Tanatar, H.Kitano, N.Salovich, R.W.Giannetta, P.Walmsley, (1965).
A.Carrington,R.Prozorov, andY.Matsuda,Science336,1554 84 P.FuldeandR.A.Ferrell,Phys.Rev.135,A550(1964).
(2012). 85 Thepossibilitiyofsuchastatewithtwocoexistingorderparam-
57 A.Levchenko,M.G.Vavilov,M.Khodas, andA.V.Chubukov, eterswasnotedinRefs.75,77,88,and89.
Phys.Rev.Lett.110,177003(2013). 86 M. Hoyer, S. V. Syzranov, and J. Schmalian, Phys. Rev. B 89,
58 D.Chowdhury,B.Swingle,E.Berg, andS.Sachdev,Phys.Rev. 214504(2014).
Lett.111,157004(2013). 87 H.Meier,M.Einenkel,C.Pépin, andK.B.Efetov,Phys.Rev.B
59 P.Walmsley, C.Putzke, L.Malone, I.Guillamón, D.Vignolles, 88,020506(R)(2013).
C.Proust,S.Badoux,A.I.Coldea,M.D.Watson,S.Kasahara, 88 D.F.AgterbergandH.Tsunetsugu,Nat.Phys.4,639(2008).
Y.Mizukami,T.Shibauchi,Y.Matsuda, andA.Carrington,Phys. 89 L. P. Gor’kov and G. B. Teitel’baum, Phys. Rev. B 87, 024504
Rev.Lett.110,257002(2013). (2013).
60 D.Kuzmanovski,A.Levchenko,M.Khodas, andM.G.Vavilov,