ebook img

Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials PDF

13 Pages·2013·0.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials

ÖzarslanAdvancesinDifferenceEquations2013,2013:116 http://www.advancesindifferenceequations.com/content/2013/1/116 RESEARCH OpenAccess Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials MehmetAliÖzarslan* *Correspondence: [email protected] Abstract DepartmentofMathematics, Inthispaper,weintroduceaunifiedfamilyofHermite-basedApostol-Bernoulli,Euler FacultyofArtsofSciences,Eastern MediterraneanUniversity, andGenocchipolynomials.Weobtainsomesymmetryidentitiesbetweenthese Gazimagusa,NorthCyprus, polynomialsandthegeneralizedsumofintegerpowers.Wegiveexplicitclosed-form Mersin10,Turkey formulaeforthisunifiedfamily.Furthermore,weproveafiniteseriesrelationbetween thisunificationand3d-Hermitepolynomials. MSC: Primary11B68;secondary33C05 Keywords: Hermite-basedApostol-Bernoullipolynomials;Hermite-based Apostol-Eulerpolynomials;Hermite-basedApostol-Genocchipolynomials; generalizedsumofintegerpowers;generalizedsumofalternativeintegerpowers 1 Introduction Recently,Khanetal.[]introducedtheHermite-basedAppellpolynomialsviathegener- atingfunction G(x,y,z;t)=A(t)exp(Mt), where ∂ ∂ M=x+y +z ∂x ∂x isthemultiplicativeoperatorofthe-variableHermitepolynomials,whicharedefinedby (cid:2) (cid:3) (cid:4)∞ tn exp xt+yt+zt = H()(x,y,z) (.) n n! n= and (cid:4)∞ A(t)= a tn, a (cid:3)=. n  n= ByusingtheBerrydecouplingidentity, eA+B=em/e((–m)A/+A)eB, [A,B]=mA/ ©2013Özarslan;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribu- tionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproductioninany medium,providedtheoriginalworkisproperlycited. ÖzarslanAdvancesinDifferenceEquations2013,2013:116 Page2of13 http://www.advancesindifferenceequations.com/content/2013/1/116 theyobtainedthegeneratingfunctionoftheHermite-basedAppellpolynomials A (x, H n y,z)as (cid:2) (cid:3) (cid:4)∞ tn G(x,y,z;t)=A(t)exp xt+yt+zt = A (x,y,z) . H n n! n= LettingA(t)= t ,theydefinedHermite-Bernoullipolynomials B (x,y,z)by et– H n t (cid:2) (cid:3) (cid:4)∞ tn exp xt+yt+zt = B (x,y,z) , |t|<π. et– H n n! n= ForA(t)=  ,theydefinedHermite-Eulerpolynomials E (x,y,z)by et+ H n  (cid:2) (cid:3) (cid:4)∞ tn exp xt+yt+zt = E (x,y,z) , |t|<π et+ H n n! n= andforA(t)= t ,theydefinedHermite-Genocchipolynomials G (x,y,z)by et+ H n t (cid:2) (cid:3) (cid:4)∞ tn exp xt+yt+zt = G (x,y,z) , |t|<π. et+ H n n! n= Recently,theauthorconsideredthefollowingunificationoftheApostol-Bernoulli,Euler andGenocchipolynomials (cid:5) (cid:6) –ktk α (cid:4)∞ tn f(α)(x;t;k,β):= ext= P(α)(x;k,a,b) a,b βbet–ab n,β n! n= (cid:2) (cid:3) k∈N ;a,b∈R\{};α,β∈C  andobtainedtheexplicitrepresentationofthisunifiedfamily,intermsofGaussianhyper- geometricfunction.Somesymmetryidentitiesandmultiplicationformulaarealsogiven in[].NotethatthefamilyofpolynomialsP()(x,y,z;k,a,b)wasinvestigatedin[]. n,β Weorganizethepaperasfollows. In Section,we introducetheunification oftheHermite-based generalized Apostol- Bernoulli,EulerandGenocchipolynomials P(α)(x,y,z;k,a,b) andgivesummationfor- H n,β mulas for this unification. In Section , we obtain some symmetry identities for these polynomials.InSection,wegiveexplicitclosed-formformulaeforthisunifiedfamily. Furthermore, we prove a finite series relation between this unification and d-Hermite polynomials. 2 Hermite-basedgeneralizedApostol-Bernoulli,EulerandGenocchi polynomials Inthispaper,weconsiderthefollowinggeneralclassofpolynomials: (cid:5) (cid:6) –ktk α (cid:4)∞ tn f(α)(x,y,z;t;k,β):= ext+yt+zt = P(α)(x,y,z;k,a,b) a,b βbet–ab H n,β n! n= (cid:2) (cid:3) k∈N ;a,b∈R\{};α,β∈C . (.)  ÖzarslanAdvancesinDifferenceEquations2013,2013:116 Page3of13 http://www.advancesindifferenceequations.com/content/2013/1/116 Fortheexistenceoftheexpansion,weneed (i) |t|<π whenα∈C,k=and(β)b=;|t|<π whenα∈N ,k=,,...and a  (β)b=;|t|<|blog(β)|whenα∈N ,k∈Nand(β)b(cid:3)=(or(cid:3)=–);x,y,z∈R,β∈C, a a  a a,b∈C/{};α:=; (ii) |t|<π when(β)b=–;|t|<|blog(β)|when(β)b(cid:3)=–;x,y,z∈R,k=,α,β∈C, a a a a,b∈C/{};α:=; (iii) |t|<π whenα∈N and(β)b=–;x,y,z∈R,k∈N,β∈C,a,b∈C/{};α:=,  a wherew=|w|eiθ,–π ≤θ <π andlog(w)=log(|w|)+iθ. Fork=a=b=andβ=λin(.),wedefinethefollowing. Definition. Letα∈N ,λbeanarbitrary(realorcomplex)parameterandx,y,z∈R.  TheHermite-basedgeneralizedApostol-Bernoullipolynomialsaredefinedby (cid:5) (cid:6) t α (cid:2) (cid:3) (cid:4)∞ tn exp xt+yt+zt = B(α)(x,y,z;λ) λet– H n n! n= (cid:2) (cid:7) (cid:7) |t|<π whenα∈Candλ=;|t|<(cid:7)log(λ)(cid:7) (cid:3) whenα∈N andλ(cid:3)=;x,y,z∈R;α:= .  Itisclearthat P(α)(x,y,z;,,)= B(α)(x,y,z;λ). H n,λ H n Some special cases of the Hermite-based generalized Apostol-Bernoulli polynomials (someofwhicharedefinition)arelistedbelow: • B()(x,y,z;λ):= B (x,y,z;λ)iscalledHermite-basedApostol-Bernoulli H n H n polynomials. • B (x,y,z;)= B (x,y,z)istheHermite-Bernoullipolynomials. H n H n • B (x,,;λ):=B (x;λ)istheApostol-Bernoullipolynomials(see[–]).When H n n λ=,wehavetheclassicalBernoullipolynomials. • B (;λ):=B (λ)aretheApostol-Bernoullinumbers.λ=givestheclassicalBernoulli n n numbers. Settingk+=–a=b=andβ=λin(.),wegetthefollowing. Definition . Let α and λ ((cid:3)= –) be an arbitrary (real or complex) parameter and x,y,z∈R.TheHermite-basedgeneralizedApostol-Eulerpolynomialsaredefinedby (cid:5) (cid:6)  α (cid:2) (cid:3) (cid:4)∞ tn exp xt+yt+zt = E(α)(x,y,z;λ) λet+ H n n! n= (cid:2) (cid:7) (cid:7) (cid:3) |t|<π whenλ=;|t|<(cid:7)log(–λ)(cid:7)whenλ(cid:3)=;x,y,z∈R,α∈C;α:= . Obviously,wehave P(α)(x,y,z;,–,)= E(α)(x,y,z;λ). H n,λ H n SomespecialcasesoftheHermite-basedgeneralizedApostol-Eulerpolynomials(some ofwhicharedefinition)arelistedbelow: ÖzarslanAdvancesinDifferenceEquations2013,2013:116 Page4of13 http://www.advancesindifferenceequations.com/content/2013/1/116 • E()(x,y,z;λ):= E (x,y,z;λ)iscalledHermite-basedApostol-Eulerpolynomials. H n H n • E (x,y,z;)= E (x,y,z)istheHermite-Eulerpolynomials. H n H n • E (x,,;λ):=E (x;λ)istheApostol-Eulerpolynomials(see[]).Forλ=,wehave H n n theclassicalEulerpolynomials. • nE (;λ):=E (λ)aretheApostol-Eulernumbers.Thecaseλ=givestheclassical n  n Eulernumbers. Choosingk=–a=b=andβ=λin(.),wedefinethefollowing. Definition . Let α and λ ((cid:3)= –) be an arbitrary (real or complex) parameter and x,y,z ∈ R. The Hermite-based generalized Apostol-Genocchi polynomials are defined by (cid:5) (cid:6) t α (cid:2) (cid:3) (cid:4)∞ tn exp xt+yt+zt = G(α)(x,y,z;λ) λet+ H n n! n= (cid:2) (cid:7) (cid:7) |t|<π whenα∈N andλ=;|t|<(cid:7)log(–λ)(cid:7)  (cid:3) whenα∈N andλ(cid:3)=;x,y,z∈R;α:= .  Itiseasilyseenthat (cid:5) (cid:6) – P(α) x,y,z;, , = Gα(x,y,z;λ). H n,λ  H n  Some special cases of the Hermite-based generalized Apostol-Genocchi polynomials (someofwhicharedefinition)arelistedbelow: • G()(x,y,z;λ):= G (x,y,z;λ)iscalledHermite-basedApostol-Genocchi H n H n polynomials. • G (x,y,z;)= G (x,y,z)istheHermite-Genocchipolynomials. H n H n • G (x,,;λ):=G (x;λ)istheApostol-Genocchipolynomials(see[,]).When H n n λ=,wehavetheclassicalGenocchipolynomials. • G (;λ):=G (λ)aretheApostol-Genocchinumbers.λ=givestheclassical n n Genocchinumbers. FinallywedefinetheunifiedHermite-basedApostolpolynomialsby (cid:4)∞ –ktk tn f()(x;t;k,β):= ext+yt+zt = P (x,y,z;k,a,b) a,b βbet–ab H n,β n! n= (cid:2) (cid:3) k∈N ;a,b∈R\{};β∈C .  Thusitisclearthat P (x,y,z;k,a,b)= P()(x,y,z;k,a,b)andthatwehavethefollowing H n,β H n,β observationsatonce: • P (x,y,z;,,)= B (x,y,z;λ)aretheHermite-basedApostol-Bernoulli H n,λ H n polynomials. • P (x,y,z;,–,)= E(x,y,z;λ)aretheHermite-basedApostol-Eulerpolynomials. H n,λ H • HPn,λ(x,y,z;,–,)=HGn(x,y,z;λ)aretheHermite-basedApostol-Genocchi polynomials. ÖzarslanAdvancesinDifferenceEquations2013,2013:116 Page5of13 http://www.advancesindifferenceequations.com/content/2013/1/116 For the other generalization, we refer [–] and []. Now we give some relations betweentheabovementionedApostolpolynomials. Using(.),wegetthefollowingidentityatonce. Theorem . Let α,k ∈N ; a,b∈R\{}; β ∈C be such that the conditions (i)-(iii) are  satisfied.Then,thefollowingrelation (cid:5) (cid:6) (cid:4)n n P(α) (x,y,z;k,a,b) P(α)(u,v,w;k,a,b)= P(α)(x+u,y+v,z+w;k,a,b) r H n–r,β H r,β H n,β r= holdstrue. Corollary. Foreachn∈N,thefollowingrelation (cid:5) (cid:6) (cid:4)n n B(α)(x,y,z;λ) B(β)(u,v,w;λ)= B(α+β)(x+u,y+v,z+w;λ) k H n–k H k H n k= holdstruefortheHermite-basedgeneralizedApostol-Bernoullipolynomials. Corollary. Foreachn∈N,thefollowingrelation (cid:5) (cid:6) (cid:4)n n E(α)(x,y,z;λ) E(β)(u,v,w;λ)= E(α+β)(x+u,y+v,z+w;λ) k H n–k H k H n k= holdstruefortheHermite-basedgeneralizedApostol-Eulerpolynomials. Corollary. Foreachn∈N,thefollowingrelation (cid:5) (cid:6) (cid:4)n n G(α)(x,y,z;λ) G(β)(u,v,w;λ)= G(α+β)(x+u,y+v,z+w;λ) k H n–k H k H n k= holdstruefortheHermite-basedgeneralizedApostol-Genocchipolynomials. Theorem. Foreachn∈N,thefollowingrelation (cid:5) (cid:6) (cid:5) (cid:6) (cid:4)n n x+u y+v z+w B(α)(x,y,z;λ) E(α)(u,v,w;λ)=nB(α) , , ;λ k H n–k H k H n    k= holdstruebetweentheHermite-basedgeneralizedApostol-BernoulliandEulerpolynomi- als. Proof Bydirectcalculations,wehave (cid:5) (cid:6) (cid:4)∞ x+u y+v z+w (t)n B(α) , , ;λ H n    n! n= (cid:5) (cid:6) (cid:8)(cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:9) t α x+u y+v z+w = exp t+ (t)+ (t) λet–    (cid:5) (cid:6) (cid:5) (cid:6) t α (cid:2) (cid:3)  α (cid:2) (cid:3) = exp xt+yt+zt exp ut+vt+wt λet– λet+ ÖzarslanAdvancesinDifferenceEquations2013,2013:116 Page6of13 http://www.advancesindifferenceequations.com/content/2013/1/116 (cid:4)∞ (cid:4)∞ tn tk = B(α)(x,y,z;λ) E(α)(u,v,w;λ) H n n! H k k! n= k= (cid:5) (cid:6) (cid:4)∞ (cid:4)n n tn = B(α)(x,y,z;λ) E(α)(u,v,w;λ) . k H n–k H k n! n= k= Comparingthecoefficientsof tn onbothsides,wegettheresult. (cid:2) n! 3 Symmetryidentitiesfortheunifiedfamily (cid:10) For each k ∈N , the sum S (n)= n ik is known as the power sum and we have the  k i= followinggeneratingrelation: (cid:4)∞ tk e(n+)t– S (n) =+et+et+···+ent= . k k! et– k= Foranarbitraryrealorcomplexλ,thegeneralizedsumofintegerpowersS (n,λ)isde- k fined,in[],viathefollowinggeneratingrelation: (cid:4)∞ tk λe(n+)t– S (n,λ) = . k k! λet– k= ItclearthatS (n,)=S (n). k k (cid:10) Foreachk∈N ,thesumM (n)= n (–)kikisknownasthesumofalternativeinteger  k i= powers.Thefollowinggeneratingrelationisstraightforward: (cid:4)∞ tk –(–et)(n+) M (n) =–et+et–···+(–)nent= . k k! et+ k= For an arbitrary real or complex λ, the generalized sum of alternative integer powers M (n,λ)isdefined,in[],by k (cid:4)∞ tk –λ(–et)(n+) M (n,λ) = . k k! λet+ k= ClearlyM (n,)=M (n).Ontheotherhand,ifniseven,then k k S (n,–λ)=M (n,λ). (.) k k Westartbyobtainingcertainsymmetryidentities,whichincludestheresultsgivenin [–]and[],wheny=z=. Theorem. Letc,d,m∈N,n∈N besuchthattheconditions(i)-(iii)aresatisfiedwith  treplacedbyctanddt.Thenwehavethefollowingsymmetryidentity: (cid:5) (cid:6) (cid:4)n (cid:2) (cid:3) n cn–rdr+k P(m) dx,dy,dz;k,a,b r H n–r,β r= (cid:5) (cid:6) (cid:5) (cid:5) (cid:6) (cid:6) (cid:4)r r β b (cid:2) (cid:3) × S c–; P(m–) cX,cY,cZ;k,a,b l l a H r–l,β l= ÖzarslanAdvancesinDifferenceEquations2013,2013:116 Page7of13 http://www.advancesindifferenceequations.com/content/2013/1/116 (cid:5) (cid:6) (cid:4)n (cid:2) (cid:3) n = dn–rcr+k P(m) cx,cy,cz;k,a,b r H n–r,β r= (cid:5) (cid:6) (cid:5) (cid:5) (cid:6) (cid:6) (cid:4)r r β b (cid:2) (cid:3) × S d–; P(m–) dX,dY,dZ;k,a,b . l l a H r–l,β l= Proof Let (–k)(m–)tkm–kecdxt+y(cdt)+z(cdt)(βbecdt–ab)ecdXt+Y(cdt)+Z(cdt) G(t):= . (βbect–ab)m(βbedt–ab)m ExpandingG(t)intoaseries,weget (cid:5) (cid:6) (cid:5) (cid:6)  –kcktk m βbecdt–ab G(t)= ecdxt+y(cdt)+z(cdt) ckmdk(m–) βbect–ab βbedt–ab (cid:5) (cid:6) –kdktk m– × ecdXt+Y(cdt)+Z(cdt) βbedt–ab (cid:11) (cid:12)(cid:11) (cid:5) (cid:5) (cid:6) (cid:6) (cid:12)  (cid:4)∞ (cid:2) (cid:3)(ct)n (cid:4)∞ β b (dt)l = P(m) dx,dy,dz;k,a,b S c–; ckmdk(m–) H n,β n! l a l! n= l= (cid:11) (cid:12) (cid:4)∞ (cid:2) (cid:3)(dt)r × P(m–) cX,cY,cZ;k,a,b . H r,β r! r= Now,usingCorollaryin[,p.],weget (cid:11) (cid:5) (cid:6) (cid:4)∞ (cid:4)n (cid:2) (cid:3)  n G(t)= cn–rdr+k P(m) dx,dy,dz;k,a,b ckmdkm r H n–r,β n= r= (cid:5) (cid:6) (cid:5) (cid:5) (cid:6) (cid:6) (cid:12) (cid:4)r r β b (cid:2) (cid:3) tn × S c–; P(m–) cX,cY,cZ;k,a,b . (.) l l a H r–l,β n! l= Inasimilarmanner, (cid:5) (cid:6) (cid:5) (cid:6)  –kdktk m βbecdt–ab G(t)= ecdxt+y(cdt)+z(cdt) dkmck(m–) βbect–ab βbedt–ab (cid:5) (cid:6) –kcktk m– × ecdXt+Y(cdt)+Z(cdt) βbedt–ab (cid:11) (cid:5) (cid:6) (cid:4)∞ (cid:4)n (cid:2) (cid:3)  n = dn–rcr+k P(m) cx,cy,cz;k,a,b ckmdkm r H n–r,β n= r= (cid:5) (cid:6) (cid:5) (cid:5) (cid:6) (cid:6) (cid:12) (cid:4)r r β b (cid:2) (cid:3) tn × S d–; P(m–) dX,dY,dZ;k,a,b . (.) l l a H r–l,β n! l= From(.)and(.),wegettheresult. (cid:2) Fork=a=b=andβ=λwegetthefollowingcorollaryatonce. ÖzarslanAdvancesinDifferenceEquations2013,2013:116 Page8of13 http://www.advancesindifferenceequations.com/content/2013/1/116 Corollary. Forallc,d,m∈N,n∈N ,λ∈C,wehavethefollowingsymmetryidentity  fortheHermitebasedgeneralizedApostol-Bernoullipolynomials: (cid:5) (cid:6) (cid:4)n (cid:2) (cid:3) n cn–rdr+ B(m) dx,dy,dz,λ r H n–r r= (cid:5) (cid:6) (cid:4)r (cid:2) (cid:3) r × S(c–;λ) B(m–) cX,cY,cZ,λ l l H r–l l= (cid:5) (cid:6) (cid:4)n (cid:2) (cid:3) n = dn–rcr+ B(m) cx,cy,cz,λ r H n–r r= (cid:5) (cid:6) (cid:4)r (cid:2) (cid:3) r × S(d–;λ) B(m–) dX,dY,dZ,λ . l l H r–l l= Fork+=–a=b=andβ=λweget,byconsidering(.)that Corollary. Forallm∈N,n∈N ,λ∈C,wehaveforeachpairofpositiveevenintegers  candd,orforeachpairofpositiveoddintegerscandd, (cid:5) (cid:6) (cid:4)n (cid:2) (cid:3) n cn–rdr+ E(m) dx,dy,dz,λ r H n–r r= (cid:5) (cid:6) (cid:4)r (cid:2) (cid:3) r × M(c–;λ) E(m–) cX,cY,cZ,λ l l H r–l l= (cid:5) (cid:6) (cid:4)n (cid:2) (cid:3) n = dn–rcr+ E(m) cx,cy,cz,λ r H n–r r= (cid:5) (cid:6) (cid:4)r (cid:2) (cid:3) r × M(d–;λ) E(m–) dX,dY,dZ,λ . l l H r–l l= Lettingk=–a=b=andβ=λandtakingintoaccount(.)thatwehavethefollow- ing. Corollary. Forallm∈N,n∈N ,λ∈C,wehaveforeachpairofpositiveevenintegers  candd,orforeachpairofpositiveoddintegerscandd,that (cid:5) (cid:6) (cid:4)n (cid:2) (cid:3) n cn–rdr+ G(m) dx,dy,dz,λ r H n–r r= (cid:5) (cid:6) (cid:4)r (cid:2) (cid:3) r × M(c–;λ) G(m–) cX,cY,cZ,λ l l H r–l l= (cid:5) (cid:6) (cid:4)n (cid:2) (cid:3) n = dn–rcr+ G(m) cx,cy,cz,λ r H n–r r= (cid:5) (cid:6) (cid:4)r (cid:2) (cid:3) r × M(d–;λ) G(m–) dX,dY,dZ,λ . l l H r–l l= ÖzarslanAdvancesinDifferenceEquations2013,2013:116 Page9of13 http://www.advancesindifferenceequations.com/content/2013/1/116 4 Closed-formformulaeforHermite-basedgeneralizedApostolpolynomials Inthissection,takingintoaccounttherelations (cid:5) (cid:6) –ktk α (cid:4)∞ tn f(α)(x,y,z;t;k,β):= ext+yt+zt = P(α)(x,y,z;k,a,b) , a,b βbet–ab H n,β n! n= (cid:5) (cid:6) (cid:4)∞ –ktk tn f()(x,y,z;t;k,β):= ext+yt+zt = P (x,y,z;k,a,b) , a,b βbet–ab H n,β n! n= weobservethefollowingfact: (cid:8) (cid:5) (cid:6)(cid:9) x y z α f() , , ;t;k,β =f(α)(x,y,z;t;k,β). (.) a,b α α α a,b Using(.),westartbyprovingthefollowingclosedformsummationformula: Theorem. Lettheconditions(i)-(iii)besatisfied.Thefollowingsummationformula: (cid:5) (cid:6)(cid:8) (cid:5) (cid:6) (cid:4)n n x y z P(α) (x,y,z;k,a,b) P , , ;k,a,b l H n–l+,β H l,β α α α l= (cid:5) (cid:6)(cid:9) x y z –α P(α) (x,y,z;k,a,b) P , , ;k,a,b = H n–l,β H l+,β α α α holdstrue. Proof Takinglogarithmsonbothsidesof(.)andthendifferentiatingwithrespecttot, weget (cid:5) (cid:6) ∂f(α)(x,y,z;t;k,β) x y z a,b f() , , ;t;k,β ∂t a,b α α α ∂f()(x, y, z;t;k,β) =αf(α)(x,y,z;t;k,β) a,b α α α . a,b ∂t Insertingthecorrespondinggeneratingrelations,weobtain (cid:5) (cid:6) (cid:4)∞ (cid:4)∞ tn– x y z tl n P(α)(x,y,z;k,a,b) P , , ;k,a,b H n,β n! H l,β α α α l! n= l= (cid:5) (cid:6) (cid:4)∞ (cid:4)∞ tn x y z tl– =α P(α)(x,y,z;k,a,b) l P , , ;k,a,b , H n,β n! H l,β α α α l! n= l= andhence (cid:5) (cid:6) (cid:4)∞ (cid:4)∞ tn x y z tl P(α) (x,y,z;k,a,b) P , , ;k,a,b H n+,β n! H l,β α α α l! n= l= (cid:5) (cid:6) (cid:4)∞ (cid:4)∞ tn x y z tl =α P(α)(x,y,z;k,a,b) P , , ;k,a,b . H n,β n! H l+,β α α α l! n= l= ÖzarslanAdvancesinDifferenceEquations2013,2013:116 Page10of13 http://www.advancesindifferenceequations.com/content/2013/1/116 Usingthefactthat(see[,p.,Lemma]) (cid:4)∞ (cid:4)∞ (cid:4)∞ (cid:4)n A(n,l)= A(n–l,l), (.) n= l= n= l= weget (cid:11) (cid:5) (cid:6) (cid:5) (cid:6)(cid:12) (cid:4)∞ (cid:4)n n x y z tn P(α) (x,y,z;k,a,b) P , , ;k,a,b l H n–l+,β H l,β α α α n! n= l= (cid:11) (cid:5) (cid:6) (cid:5) (cid:6)(cid:12) (cid:4)∞ (cid:4)n n x y z tn =α P(α) (x,y,z;k,a,b) P , , ;k,a,b . l H n–l,β H l+,β α α α n! n= l= Whencetheresult. (cid:2) Corollary. Letk=a=b=andβ=λ.Forallm∈N,n∈N ,λ∈C,wehavethefol-  lowingclosedformsummationformulaforthegeneralizedApostol-Bernoullipolynomials: (cid:5) (cid:6)(cid:8) (cid:5) (cid:6) (cid:4)n n x y z B(α) (x,y,z;λ) B , , ;λ k H n–k+ H k α α α k= (cid:5) (cid:6)(cid:9) x y z –α B(α)(x,y,z;λ)B , , ;λ =. H n–k k+ α α α Corollary. Letk+=–a=b=andβ=λ.Forallm∈N,n∈N ,λ∈C,wehavethe  followingclosedformsummationformulaforthegeneralizedApostol-Eulerpolynomials: (cid:5) (cid:6)(cid:8) (cid:5) (cid:6) (cid:4)n n x y z E(α) (x,y,z;λ) E , , ;λ k H n–k+ H k α α α k= (cid:5) (cid:6)(cid:9) x y z –α E(α)(x,y,z;λ)E , , ;λ =. H n–k k+ α α α Corollary. Letk=–a=b=andβ=λ.Forallm∈N,n∈N ,λ∈C,wehavethe  followingclosedformsummationformulaforthegeneralizedApostol-Genocchipolynomi- als: (cid:5) (cid:6)(cid:8) (cid:5) (cid:6) (cid:4)n n x y z G(α) (x,y,z;λ) G , , ;λ k H n–k+ H k α α α k= (cid:5) (cid:6)(cid:9) x y z –α G(α)(x,y,z;λ)G , , ;λ =. H n–k k+ α α α Theorem. Lettheconditions(i)-(iii)besatisfied.Thenwehavethefollowingrelation betweenHermitebasedApostolpolynomialsandd-Hermitepolynomials: P(α) (X,Y,Z;k,a,b) H n+m,β (cid:5) (cid:6)(cid:5) (cid:6) (cid:4)n,m n m = H()(X–x,Y –y,Z–z) P(α) (x,y,z;k,a,b). r l r+l H n+m–r–l r,l=

Description:
DOI : 10.1186/1687-1847-2013-116. Cite this article as: Özarslan, M.A. Adv Differ Equ (2013) 2013: 116. doi:10.1186/1687-1847-2013-116.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.