ebook img

Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics PDF

176 Pages·2019·2.03 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics

Vesna Todorčević Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics Vesna Todorcˇevic´ Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics 123 VesnaTodorcˇevic´ FacultyofOrganizationalSciences UniversityofBelgrade Belgrade,Serbia MathematicalInstitute SerbianAcademyofSciencesandArts Belgrade,Serbia ISBN978-3-030-22590-2 ISBN978-3-030-22591-9 (eBook) https://doi.org/10.1007/978-3-030-22591-9 MathematicsSubjectClassification:30C65,30C62,31B05,31B15,31B25 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The goal of this book is to present a research area in Geometric Function Theory concerned with harmonic quasiconformal mappings and hyperbolic type metrics defined on planar and multidimensional domains. The classes of quasiconformal andquasiregularmappingsarewell-establishedareasofstudyinthisfieldasthese classes are natural and fruitful generalizations of the class of analytic functions in theplanarcase.Harmonicmappingsareanothernaturalgeneralizationofconformal mappingsandanalyticfunctionsandformanotherwell-establishedclass.Injective quasiregular mappings are quasiconformal, and conformal mappings are both harmonicandquasiconformal.Ontheotherhand,harmonicmappingsaresmooth, and when quasiregular, they are also locally quasiconformal independently of the dimension. So in higher dimensions, the study of the class of mappings that are bothharmonicandquasiconformalsuggestsitself.Itturnsoutthatwhilethisseems atfirstaratherrestrictiveclass,thestudyofthisclassuncoversnewandunexpected phenomena and is today recognized as an important research area in Geometric Function Theory. The book contains many concrete examples, as well as detailed proofs and explanations of motivations behind given results, gradually bringing the reader to the forefront of current research in the area. The book is written for a wide readership from graduate students of mathematical analysis to researchers working in this or related areas who want to learn the tools or work on the open problems, many of which are listed in various parts of the book, especially in the last chapter. An extensive bibliography of the field is also given for the readers whowishtoexploredeeperintotheresultspresentedinthebookorrelatedresults that are not covered here. Prerequisite knowledge for reading this book includes the basic knowledge of real and complex analysis, harmonic functions, and the topologyofmetricspaces.Thebookisprimarilybasedonresearchdoneinthelast 12 years, starting with the author’s master and doctoral dissertations and followed by a number of papers that are either single authored or jointly authored with other experts in the field. The author is therefore grateful to all her collaborators v vi Preface and other mathematicians who have built this research area and have shared their expertisewithenthusiasm.Withouttheirhelp,thisbookwouldnothavecomeinto itsexistence. Belgrade,Serbia VesnaTodorcˇevic´ January2019 Contents 1 Introduction .................................................................. 1 2 QuasiconformalandQuasiregularHarmonicMappings................ 5 2.1 ModuliofCurveFamilies .............................................. 5 2.2 DefinitionofQuasiconformalMappings............................... 14 2.3 HölderContinuityofQuasiconformalMappings...................... 23 2.4 ModuliofContinuityinthePlane...................................... 31 2.5 ModuliofContinuityinHigherDimensions .......................... 40 2.6 AnExampleofNon-LipschitzHQCMappingontheUnitBall...... 43 2.7 HölderContinuityofHQCMappings.................................. 46 2.8 SubharmonicityoftheModulusofHQRMappings................... 52 3 HyperbolicTypeMetrics.................................................... 57 3.1 MöbiusTransformations................................................ 58 3.2 ChordalMetric.......................................................... 60 3.3 HyperbolicMetric....................................................... 63 3.4 DistanceRatioMetricj ............................................... 67 D 3.5 QuasihyperbolicMetrick ............................................. 70 D 3.6 OtherHyperbolicTypeMetrics ........................................ 73 3.7 QuasiconformalMappingsandk andj Metrics ................... 74 D D 3.8 QuasiconformalMappingswithIdentityBoundaryValues........... 77 4 DistanceRatioMetric ....................................................... 85 4.1 RefinementsoftheGehring–OsgoodResult........................... 86 4.2 LipschitzContinuityandAnalyticFunctions.......................... 103 5 Bi-LipschitzPropertyofHQCMappings................................. 111 5.1 Bi-LipschitzPropertyofHQCMappingsinPlane.................... 111 5.2 WhenPartofBoundaryIsFlat......................................... 115 5.3 Bi-LipschitzPropertyofHQCMappingsinHigherDimensions..... 119 vii viii Contents 6 Quasi-NearlySubharmonicFunctionsandQCMappings.............. 131 6.1 Quasi-NearlySubharmonicFunctionsandConformalMappings.... 131 6.2 RegularlyOscillatingFunctionsandConformalMappings........... 133 6.3 Quasi-NearlySubharmonicFunctionsandQCMappings............ 134 6.4 RegularlyOscillatingFunctionsandQCMappings................... 144 6.5 SomeGeneralizationsandExamples .................................. 145 7 PossibleResearchDirections................................................ 147 7.1 CharacterizationsofBoundaryValues................................. 147 7.2 QCandHQCMappingsonNon-smoothDomains.................... 149 References......................................................................... 153 Index............................................................................... 161 Notation Z Setofintegers N Setofpositiveintegers R Setofrealnumbers C Setofcomplexnumbers |z| Modulusofthecomplexnumberz arg(z) Argumentofthecomplexnumberz Rn n-dimensionalEuclideanspace Rn =Rn∪{∞} Möbiusspace |x| Euclideannormofavectorx ∈Rn Bn(x,r) Openballcenteredatx ∈Rnwithradiusr >0 V Volumeofthen-dimensionalunitball n Sn−1(x,r) Spherecenteredatx ∈Rnwithradiusr >0 ωn−1 (n−1)-dimensionalmeasureofSn−1(0,1) Hn Poincarehalf-space S Planarangulardomain ρ P(a,t) (n−1)-dimensionalhyperplane GM(Rn) GroupofMöbiustransformations M (R) Setofsquarematricesoforder3 3 π(x) Stereographicprojection q(x,y) Spherical(chordal)distancebetweenx andy Q(x,r) Sphericalball |a,b,c,d| (Absolute)crossratio a∗ ImageofthepointaunderaninversiononSn−1 D(a,M) HyperbolicballwithcenteraandradiusM dist(x,A) Distanceofapointx ∈RntoasetA⊆Rn ∂A BoundaryofasetA⊆Rn diam(A) DiameterofasetA⊆Rn χ CharacteristicfunctionofasetA⊆Rn A l(γ) Lengthofthecurveγ ρ(x,y) Hyperbolicdistancebetweenx andy j Distanceratiometric D ix x Notation k Quasihyperbolicmetric D δ Seittenrantametric G α Apollonianmetric G s Triangularratiometric G λ Ferrandmetric G μ Modulusmetric G Δ(E,F;G) FamilyofallclosednonconstantcurvesjoiningE,F inG R (s) Grötzchring G,n R (s) Teichmüllerring T,n γ(s),γ (s) CapacityofR (s) n G,n τ(s),τ (s) CapacityofR (s) n T,n ϕ (r),ϕ (r) SpecialfunctionrelatedtotheSchwarzlemma K K,n logΦ (s) ModulusoftheGrötzschring n logψ (s) ModulusoftheTeichmüllerring n λ Grötzschringconstant n mod(R) Modulusofaring cap(R) Capacityofaring cap (K) Wienercapacity W p-capE,capE (p-)capacityofacondenser Λ (F) α-dimensionalHausdorffmeasureofF α N(f,A,y) Numberofpreimagesofpointy inAunderf Lip(f) Lipschitzconstantoff K(f),K (f),K (f) Maximal,outer,andinnerdilatationoff O I H(x,f) Lineardilatationofamappingf atx M (Γ),M(Γ) (p-)modulusofthecurveΓ p Id (∂Bn) K-qcmapswithidentityboundaryvalues K C1(C2) Class of functions with continuous first-order (second- order)derivatives ∞ C (Ω) Class of compactly supported functions with derivatives C ofallorders ∇f Gradientofmappingf :Ω −→Rn Df Weakderivativeofmappingf J (x) Jacobianofmappingf :Ω −→Rnatx f α (z) Averagederivative f H Hessianofu u ||Du(x)|| Hilbert–Schmidtnorm Δf Laplacianoff Lp(Ω) Lebesguespace ||f||Lp Lp-normoffunctionf p L LocalLebesguespace loc W1,p(Ω) Sobolevspace 1,p W (Ω) LocalSobolevspace loc P(x,ξ) Poissonkernelfortheunitball GBn(x,y) Greenfunctionontheunitball

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.