ebook img

Handbook of the Tutte Polynomial and Related Topics PDF

805 Pages·2022·36.564 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of the Tutte Polynomial and Related Topics

Handbook of the Tutte Polynomial and Related Topics Handbook of the Tutte Polynomial and Related Topics Edited by Joanna A. Ellis-Monaghan Korteweg - de Vries Instituut voor Wiskunde, Universiteit van Amsterdam, Netherlands Iain Moffatt Royal Holloway, University of London, United Kingdom First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2022 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978- 750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Names: Ellis-Monaghan, Joanna Anthony, editor. | Moffatt, Iain, editor. Title: Handbook of the Tutte polynomial and related topics / edited by Joanna A. Ellis-Monaghan, Iain Moffatt. Description: First edition. | Boca Raton : C&H/CRC Press, 2022. | Includes bibliographical references and index. Identifiers: LCCN 2021048725 (print) | LCCN 2021048726 (ebook) | ISBN 9781482240627 (hardback) | ISBN 9781032231938 (paperback) | ISBN 9780429161612 (ebook) Subjects: LCSH: Tutte polynomial. | Graph theory. | Polynomials. | Invariants. Classification: LCC QA166.249 .H36 2022 (print) | LCC QA166.249 (ebook) | DDC 511/.5--dc23/eng/20211223 LC record available at https://lccn.loc.gov/2021048725 LC ebook record available at https://lccn.loc.gov/2021048726 ISBN: 9781482240627 (hbk) ISBN: 9781032231938 (pbk) ISBN: 9780429161612 (ebk) DOI: 10.1201/9780429161612 Typeset in CMR10 by KnowledgeWorks Global Ltd. Publisher's note: This book has been prepared from camera-ready copy provided by the authors. Contents Preface xv Contributors xvii I Fundamentals 1 1 Graph theory 3 Joanna A. Ellis-Monaghan • Iain Moffatt 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Graph theory conventions . . . . . . . . . . . . . . . . . . . 3 2 The Tutte polynomial for graphs 14 Joanna A. Ellis-Monaghan • Iain Moffatt 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 The standard definitions of the Tutte polynomial . . . . . . 15 2.3 Multiplicativity . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Universality of the Tutte polynomial . . . . . . . . . . . . . 24 2.5 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Essential properties of the Tutte polynomial 27 B´ela Bollob´as • Oliver Riordan 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Evaluations at special points . . . . . . . . . . . . . . . . . 28 3.3 Coefficient properties and irreducibility . . . . . . . . . . . . 32 3.4 Evaluations along curves . . . . . . . . . . . . . . . . . . . . 34 3.5 Dual graphs and medial graphs . . . . . . . . . . . . . . . . 36 3.6 Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7 Signed, colored and topological Tutte polynomials . . . . . 42 3.8 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Matroid theory 44 James Oxley 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 Fundamental examples and definitions . . . . . . . . . . . . 45 4.3 The many faces of a matroid . . . . . . . . . . . . . . . . . 51 4.4 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 v vi Contents 4.5 Basic constructions . . . . . . . . . . . . . . . . . . . . . . . 60 4.6 More examples . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.7 The Tutte polynomial of a matroid . . . . . . . . . . . . . . 73 4.8 Some particular evaluations . . . . . . . . . . . . . . . . . . 81 4.9 Some basic identities . . . . . . . . . . . . . . . . . . . . . . 85 5 Tutte polynomial activities 86 Spencer Backman 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2 Activities for maximal spanning forests . . . . . . . . . . . . 87 5.3 Activity bipartition . . . . . . . . . . . . . . . . . . . . . . . 88 5.4 Activities for subgraphs . . . . . . . . . . . . . . . . . . . . 89 5.5 Depth-first search external activity . . . . . . . . . . . . . . 90 5.6 Activities via combinatorial maps . . . . . . . . . . . . . . . 91 5.7 Unified activities for subgraphs via decision trees . . . . . . 93 5.8 Orientation activities . . . . . . . . . . . . . . . . . . . . . . 94 5.9 Active orders . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.10 Shellability and activity . . . . . . . . . . . . . . . . . . . . 97 5.11 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 99 6 Tutte uniqueness and Tutte equivalence 100 Joseph E. Bonin • Anna de Mier 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2 Basic notions and results, and initial examples . . . . . . . 101 6.3 Tutte uniqueness and equivalence for graphs . . . . . . . . . 108 6.4 Tutte uniqueness and equivalence for matroids . . . . . . . 116 6.5 Related results . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.6 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 137 II Computation 139 7 Computational techniques 141 Criel Merino 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 Direct computation . . . . . . . . . . . . . . . . . . . . . . . 142 7.3 Duality and matroid operations . . . . . . . . . . . . . . . . 145 7.4 Using equivalent polynomials . . . . . . . . . . . . . . . . . 147 7.5 Transfer matrix method . . . . . . . . . . . . . . . . . . . . 151 7.6 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.7 Counting arguments . . . . . . . . . . . . . . . . . . . . . . 156 7.8 Other strategies . . . . . . . . . . . . . . . . . . . . . . . . . 158 7.9 Computation for common graphs and matroids . . . . . . . 159 7.10 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 159 Contents vii 8 Computational resources 161 David Pearce • Gordon F. Royle 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . 162 8.3 Comparative performance . . . . . . . . . . . . . . . . . . . 170 8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 8.5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 173 9 The exact complexity of the Tutte polynomial 175 Tomer Kotek • Johann A. Makowsky 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 9.2 Complexity classes and graph width . . . . . . . . . . . . . 176 9.3 Exact evaluations on graphs . . . . . . . . . . . . . . . . . . 179 9.4 Exact evaluation on matroids . . . . . . . . . . . . . . . . . 184 9.5 Algebraic models of computation . . . . . . . . . . . . . . . 190 9.6 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 192 10 Approximating the Tutte polynomial 194 Magnus Bordewich 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 10.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 10.3 Randomized approximation schemes . . . . . . . . . . . . . 196 10.4 Positive approximation results . . . . . . . . . . . . . . . . . 199 10.5 Negative results: inapproximability . . . . . . . . . . . . . . 203 10.6 The quantum connection . . . . . . . . . . . . . . . . . . . . 208 10.7 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 209 III Specializations 211 11 Foundations of the chromatic polynomial 213 Fengming Dong • Khee Meng Koh 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 11.2 Computing chromatic polynomials . . . . . . . . . . . . . . 214 11.3 Properties of chromatic polynomials . . . . . . . . . . . . . 220 11.4 Chromatically equivalent graphs . . . . . . . . . . . . . . . 232 11.5 Roots of chromatic polynomials . . . . . . . . . . . . . . . . 241 11.6 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 247 12 Flows and colorings 252 Delia Garijo • Andrew Goodall • Jaroslav Neˇsetˇril 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 12.2 Flows and the flow polynomial . . . . . . . . . . . . . . . . 253 12.3 Coloring-flow convolution formulas . . . . . . . . . . . . . . 257 12.4 A-bicycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 12.5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 263 viii Contents 13 Skein polynomials and the Tutte polynomial when x=y 266 Joanna A. Ellis-Monaghan • Iain Moffatt 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 13.2 Vertex states, graph states, and skein relations . . . . . . . 267 13.3 Skein polynomials . . . . . . . . . . . . . . . . . . . . . . . . 269 13.4 Evaluations of the Tutte polynomial along x=y . . . . . . 280 13.5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 283 14 The interlace polynomial and the Tutte–Martin polynomial 284 Robert Brijder • Hendrik Jan Hoogeboom 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 14.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 14.3 Interlace polynomial . . . . . . . . . . . . . . . . . . . . . . 286 14.4 Martin polynomial . . . . . . . . . . . . . . . . . . . . . . . 291 14.5 Global interlace polynomial . . . . . . . . . . . . . . . . . . 292 14.6 Two-variable interlace polynomial . . . . . . . . . . . . . . . 294 14.7 Weighted interlace polynomial . . . . . . . . . . . . . . . . . 295 14.8 Connection with the Tutte polynomial . . . . . . . . . . . . 296 14.9 Isotropic systems and the Tutte–Martin polynomial . . . . . 297 14.10 Interlace polynomials for delta-matroids . . . . . . . . . . . 298 14.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 14.12 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 303 IV Applications 305 15 Network reliability 307 Jason I. Brown • Charles J. Colbourn 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 15.2 Forms of the reliability polynomial . . . . . . . . . . . . . . 310 15.3 Calculating coefficients . . . . . . . . . . . . . . . . . . . . . 314 15.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 315 15.5 Coefficient inequalities . . . . . . . . . . . . . . . . . . . . . 316 15.6 Analytic properties of reliability . . . . . . . . . . . . . . . . 321 15.7 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 324 16 Codes 328 Thomas Britz • Peter J. Cameron 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 16.2 Linear codes and the Tutte polynomial . . . . . . . . . . . . 329 16.3 Ordered tuples and subcodes . . . . . . . . . . . . . . . . . 334 16.4 Equivalence of the Tutte polynomial and weights . . . . . . 337 16.5 Orbital polynomials . . . . . . . . . . . . . . . . . . . . . . 337 16.6 Other generalizations and applications . . . . . . . . . . . . 339 16.7 Wei’s duality theorem . . . . . . . . . . . . . . . . . . . . . 340 16.8 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 343 Contents ix 17 The chip-firing game and the sandpile model 345 Criel Merino 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 17.2 The Tutte polynomial and the chip-firing game . . . . . . . 346 17.3 Sandpile models . . . . . . . . . . . . . . . . . . . . . . . . . 348 17.4 The critical group and parking functions . . . . . . . . . . . 349 17.5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 351 18 The Tutte polynomial and knot theory 352 Stephen Huggett 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 18.2 Graphs and links . . . . . . . . . . . . . . . . . . . . . . . . 353 18.3 Polynomial invariants of links . . . . . . . . . . . . . . . . . 355 18.4 The Tutte and Jones polynomials . . . . . . . . . . . . . . . 357 18.5 The Tutte and HOMFLYPT polynomials . . . . . . . . . . 359 18.6 Applications in knot theory . . . . . . . . . . . . . . . . . . 360 18.7 The Bollob´as–Riordan polynomial . . . . . . . . . . . . . . 362 18.8 Categorification . . . . . . . . . . . . . . . . . . . . . . . . . 364 18.9 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 366 19 Quantum field theory connections 368 Adrian Tanasa 19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 19.2 The Symanzik polynomials as evaluations of the multivariate Tutte polynomial . . . . . . . . . . . . . . . . . . . . . . . . 369 19.3 The Symanzik polynomials in quantum field theory . . . . . 370 19.4 Hopf algebras and the Tutte polynomial . . . . . . . . . . . 375 19.5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 377 20 The Potts and random-cluster models 378 Geoffrey Grimmett 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 20.2 Probabilistic models from physics . . . . . . . . . . . . . . . 379 20.3 Phase transition . . . . . . . . . . . . . . . . . . . . . . . . 385 20.4 Basic properties of random-cluster measures . . . . . . . . . 386 20.5 The Limit as q ↓0 . . . . . . . . . . . . . . . . . . . . . . . 387 20.6 Flow polynomial . . . . . . . . . . . . . . . . . . . . . . . . 390 20.7 The limit of zero temperature . . . . . . . . . . . . . . . . . 391 20.8 The random-cluster model on the complete graph . . . . . . 392 20.9 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . 393 21 Where Tutte and Holant meet: a view from counting com- plexity 395 Jin-Yi Cai • Tyson Williams 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.