Energy Systems in Electrical Engineering G.N. Tiwari Arvind Tiwari Shyam Handbook of Solar Energy Theory, Analysis and Applications 123 Energy Systems in Electrical Engineering Series editor Muhammad H. Rashid, Pensacola, USA More information about this series at http://www.springer.com/series/13509 G.N. Tiwari Arvind Tiwari (cid:129) Shyam Handbook of Solar Energy Theory, Analysis and Applications 123 G.N.Tiwari Shyam Centrefor Energy Studies Centrefor Energy Studies Indian Institute of Technology Delhi Indian Institute of Technology Delhi NewDelhi NewDelhi India India ArvindTiwari Qassim University Collegeof Engineering Buraydah SaudiArabia ISSN 2199-8582 ISSN 2199-8590 (electronic) Energy Systems inElectrical Engineering ISBN978-981-10-0805-4 ISBN978-981-10-0807-8 (eBook) DOI 10.1007/978-981-10-0807-8 LibraryofCongressControlNumber:2016937507 ©SpringerScience+BusinessMediaSingapore2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerScience+BusinessMediaSingaporePteLtd. Our respected teacher and guruji, Padmashri Prof. M.S. Sodha, FNA, on his 84th birthday (February 08, 2016) Preface Solarenergyisclean,environmentallyfriendlyandfreelyavailableovertheplanet earth.Life on earth also owes its existence to solar energy. Solar energyis usedto producethermalaswellaselectricalpower.Iffossilfuelscontinuetobedepletedat the present rate, they will be exhausted soon.The useoffossil fuels isalso largely responsibleforincreasingpollutionandresultingclimatechange.Solarenergyand otherrenewablesources,enableustomeetthedemandforenergy,whileofferinga cleaner and greener footprint. In the recent past, there has been rapid development in solar thermal tech- nologies and photovoltaic (PV) materials. This development brought cost effec- tiveness to solar devices. Based on the developments in the field of solar technology, we decided to compose a handbook of solar energy, which goes beyond the usual and brings together a myriad of current topics such as Day-lighting, Solar cell materials, Photovoltaic thermal (PVT) systems, Energy conservation, Solar power generation, Thermodynamics, Solar cooling of houses, Energyandexergyanalysis,CO credit,EnergyMatrices,LifeCycleanalysiswith 2 and without CO credit. 2 The main objective of writing this book is to create a comprehensive and easy-to-understand source of information on the advances in this rapidly growing researcharea.Thisbookincludesenoughinformationonthebasicstobeusedasa textbook undergraduate coursework in for engineering and the sciences. The inclusion of advanced concepts and research trends will also make it useful as a reference for scientists and professionals. An attempt has also been made to give solved examples and exercise problems with hint and objective questions at appropriate place in each chapter for better understanding of solar energy applications. Thisbookconsistsoftwentychapters.Thebasicsofhourly,daily,monthlysolar radiation on horizontal and inclined surfaces and sun-earth angles have been dis- cussed briefly in Chap. 1. The various natural day lighting system with examples have been discussed in Chap. 2. Chapter 3 deals with the basic elements of heat transfer mechanisms, laws of thermodynamics and exergy which have been used vii viii Preface throughout text. Effectsofnano-particles with water asabasefluidhavealso been discussedbriefly.Chapter4discussesdifferentsolarcellmaterials,PVmodules,PV arrays and its applications in various sectors. Solar fluid collectors namely con- ventional flat plate collectors (FPC’s), solar concentrators and evacuated tubular collectors(ETC’s)aredealtwithinChaps.5−7.Chapter8discussesindustrialsolar waterheatingsystemsfordifferentmodesofoperation.ThemodelingofPVTsolar air heaters and their applications are reported in Chap. 9. The various passive conceptsofheating/coolingofahousewithapproximatemethodsandsolarcooling houses have been briefly discussed in Chaps. 10 and 11, respectively. Chapters 12 and 13 cover other solar thermal applications namely solar crop drying and solar distillation systems with basic heat transfer, thermal modeling and examples. Energy analyses of solar thermal and PV systems have been covered in Chap. 14. Solar energy storage in different modes is discussed in Chap. 15. Solar power generation by means of photovoltaic (grid and off-grid) and solar concentrating have been considered in Chap. 16. Chapters 17 and 18 report applications of solar thermalenergy,whichhasnotbeencoveredinprecedingchaptersandcoverenergy conservation in different sectors. Study of exergy, CO mitigation, carbon credit, 2 and life cycle cost analysis of some solar thermal and PV system, which is the backbone of its success, is included in Chaps. 19 and 20, respectively. SI units are used throughout the book. Some conversion units, various physical and chemical properties of water, air, metals and non-metals are also given as appendices. Acknowledgements ItisourgreatpleasuretoexpressourgratitudetoProf.BrianNorton,Ireland;Prof. T. Muneer, UK; Prof. Yogi Goswami, USA; Prof. T.T. Chow, Hong Kong and Prof. Christophe Ménézo, France; Prof. Wolfram Sparber, Italy: Prof. Ibrahim Dincer, Canada; Prof. B.K. Bala, Bangladesh; Dr. Alok Srivastava, USA and our other colleagues in India and abroad. We duly acknowledge with thanks the financial support by the Curriculum Development Cell (CD Cell), IIT Delhi for preparation of the book. We are also thankful to Springer for publishing this book. Lastbutnotleast,weexpressourdeepgratitudetoLateSmt.BhagirathiTiwari, Late Shree Bashisht Tiwari, Late Shree Bhagwan Singh Yadav and Smt. Asha Yadavfortheirblessingstowritethisbook.Further,wealsothankSmt.Kamalawati Tiwari, Smt. Vibha Tiwari, Ghansyam, Gopika, Ram, Pooja Yadav, Aradhya, Sri Vats and Ganeshu for keeping our morale high during thewritingof this book. G.N. Tiwari Arvind Tiwari Shyam Contents 1 Solar Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 General Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Basic Concept of Energy. . . . . . . . . . . . . . . . . . . . 1 1.1.2 Source of Solar Energy. . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Formation of the Atmosphere. . . . . . . . . . . . . . . . . 3 1.1.4 Solar Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.5 Solar Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.6 Air Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.7 Solar Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2 Sun‒Earth Angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.1 Solar Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3 Energy and Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 Instruments to Measure Solar Radiation . . . . . . . . . . . . . . . . 27 1.4.1 Pyrheliometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.4.2 Pyranometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.4.3 Sunshine Recorder . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5 Solar Radiation on a Horizontal Surface . . . . . . . . . . . . . . . . 29 1.5.1 Extraterrestrial Region. . . . . . . . . . . . . . . . . . . . . . 29 1.5.2 Terrestrial Region. . . . . . . . . . . . . . . . . . . . . . . . . 31 1.6 Solar Radiation on an Inclined Surface . . . . . . . . . . . . . . . . . 37 1.6.1 Conversion Factors. . . . . . . . . . . . . . . . . . . . . . . . 37 1.6.2 Total Solar Radiation on an Inclined/Tilted Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (cid:1) 1.6.3 Monthly Average Daily Solar Radiation H T on Inclined Surfaces . . . . . . . . . . . . . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2 Daylighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2 History of Daylighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ix x Contents 2.3 Components of Daylighting (Natural Light). . . . . . . . . . . . . . 55 2.3.1 Daylight Factor (DF). . . . . . . . . . . . . . . . . . . . . . . 55 2.3.2 Daylight Factor Due to Sky Components. . . . . . . . . 55 2.3.3 Daylight Factor Due to External Reflection Components (ERC). . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.4 Daylight Factor Due to Internal Reflection Components (IRC) . . . . . . . . . . . . . . . . . . . . . . . . 61 2.4 Different Concept of Daylighting . . . . . . . . . . . . . . . . . . . . . 62 2.4.1 Modern Sky Light . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4.2 Solar Pipe (SP)/Light Tube . . . . . . . . . . . . . . . . . . 63 2.4.3 Semitransparent Solar Photovoltaic Lighting System (SSPLS). . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.4 Light Shelves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.4.5 Light Reflector. . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.4.6 Tubular Daylighting Devices (TDDs) . . . . . . . . . . . 66 2.4.7 Sawtooth Roof. . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.4.8 Heliostats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.4.9 Smart-Glass Window . . . . . . . . . . . . . . . . . . . . . . 67 2.4.10 Fiber-Optic Concrete Wall (FOCW) . . . . . . . . . . . . 67 2.4.11 Hybrid Solar Lighting (HSL). . . . . . . . . . . . . . . . . 68 2.4.12 Solarium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.5 Experiments on Skylight for Natural Lighting for a Mud House: A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.5.1 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . 68 2.5.2 Modeling of the Skylight for a Dome-Shaped Mud House . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.3 Life-Cycle Cost Analysis for Skylight in the Mud House . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3 Law of Thermodynamics and Element of Heat Transfer . . . . . . . . 85 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2 Law of Thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2.1 The Zeroth Law of Thermodynamics . . . . . . . . . . . 86 3.2.2 The First Law of Thermodynamics. . . . . . . . . . . . . 86 3.2.3 The Second Law of Thermodynamics. . . . . . . . . . . 87 3.2.4 The Third Law of Thermodynamics . . . . . . . . . . . . 93 3.3 Element of Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.3.2 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.3.3 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.3.4 Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.3.5 Evaporation (Mass Transfer) . . . . . . . . . . . . . . . . . 110 3.3.6 Total Heat-Transfer Coefficient. . . . . . . . . . . . . . . . 113
Description: