ebook img

Handbook of Semiconductor Technology, Volumes 1-2 PDF

773 Pages·2000·41.976 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of Semiconductor Technology, Volumes 1-2

Handbook of Semiconductor Technology Volume 1 Kenneth A. Jackson, Wolfgang Schroter (Eds.) Weinheim . New York Chichestera Brisbane Singapore Toronto a Editors: Prof. K. A. Jackson Prof. Dr. W. Schroter The University of Arizona IV. Physikalisches Institut der Arizona Materials Laboratory Georg- August-Universitat Gottingen 4715 E. Fort Lowell Road Bunsenstfafie 13- 15 Tucson, AZ 857 12. USA D-37073 Gottingen. Germany This book was carefully produced. Nevertheless, authors, editors and publisher do not warrant the informa- tion contained therein to be free of errors. Readers are advised to keep in mind that statements, data, il- lustrations, procedural details or other items may inadvertently be inaccurate. Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data: applied for Deutsche Bibliothek Cataloguing-in-Publication-Data A catalogue record is available from Die Deutsche Bibliothek ISBN 3-527-29834-7 0 WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany), 2000 Printed on acid-free and chlorine-free paper. All rights reserved (including those of translation into other languages). No part of this book may be repro- duced in any form - by photoprinting, microfilm, or any other means - nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Composition, Printing and Bookbinding: Konrad Triltsch. Print und digitale Medien GmbH, D-97070 Wiirzburg Printed in the Federal Republic of Germany. Handbook of Semiconductor Technology Volume 1 Kenneth A. Jackson, Wolfgang Schroter (Eds.) Weinheim . New York Chichestera Brisbane Singapore Toronto a Editors: Prof. K. A. Jackson Prof. Dr. W. Schroter The University of Arizona IV. Physikalisches Institut der Arizona Materials Laboratory Georg- August-Universitat Gottingen 4715 E. Fort Lowell Road Bunsenstfafie 13- 15 Tucson, AZ 857 12. USA D-37073 Gottingen. Germany This book was carefully produced. Nevertheless, authors, editors and publisher do not warrant the informa- tion contained therein to be free of errors. Readers are advised to keep in mind that statements, data, il- lustrations, procedural details or other items may inadvertently be inaccurate. Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data: applied for Deutsche Bibliothek Cataloguing-in-Publication-Data A catalogue record is available from Die Deutsche Bibliothek ISBN 3-527-29834-7 0 WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany), 2000 Printed on acid-free and chlorine-free paper. All rights reserved (including those of translation into other languages). No part of this book may be repro- duced in any form - by photoprinting, microfilm, or any other means - nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Composition, Printing and Bookbinding: Konrad Triltsch. Print und digitale Medien GmbH, D-97070 Wiirzburg Printed in the Federal Republic of Germany. Preface Rapid scientific and technological developments have enabled microelectronics to transform the computer industry of the sixties into today's information tech- nology, which is now revolutionizing communications and the information me- dia. Larger than the car business, information technology is one of the industries most impacted by physical research and technology transfer in the 20thc entury. This will continue for at least the first two decades of the 21" century. The two volumes of this Handbook describe the underlying scientific and tech- nological bases of this unique development, with the first addressing the science, and the second the technological framework of the field. Written by experts who have made major contributions to this enterprise, the chapters span from defect physics to device processing to present a panorama of the key steps, models, and visions - in short the evolution - of microelectronics. At the same time, this Hand- book can be seen as a carefully written status report, specially valuable to those engaged in the continuing interplay between semiconductor science, technology, and business, and in the creation of new markets, such as sensor arrays, power and high frequency devices, solar cells, and blue lasers. Circuit and systems de- sign, which turn science and technology into end-user products, are not included as separate chapters, because each would need a volume in its own right. How- ever, due to their close connection with process science and technology, they are briefly treated as the need arises. In semiconductors, science frequently develops in close interplay with tech- nology, and fundamental investigations and technological advances cross-polli- nate each other in an unprecedented fashion. The miniaturization of the transis- tor, begun forty years ago, is approaching dimensions, where present concepts ap- pear to break down, and the available characterization methods may no longer function. Other devices, such as solar cells, are now entering the mass market, placing increasing demand on materials quality, process efficiency, and, of course, cost. At present, the most promising approach to addressing these challenges ap- pears to involve fundamental understanding and modeling of highly complex non- linear solid state phenomena, in short, physically-based, predictive simulation of complex process technological sequences. The first volume places particular em- phasis on the concepts and models relevant to such issues. Starting with a description of the relevant fundamental phenomena, each chap- ter describes and develops the mechanisms and concepts used in current semicon- ductor research. Experimental details are provided in the text, or summarized in tables and diagrams to the extent needed to illustrate the models under discussion. The Handbook begins with chapters on the basic concepts of band structure for- mation, charge transport, and optical excitations (chapters 1 and 2), the physics of defects (point defects, impurities, dislocations, grain boundaries, and interfac- VI Preface es) in crystalline semiconductors, particularly Si and GaAs (chapters 3-8, lo), special materials, such as hydrogenated amorphous Si (chapter 9), concluding with semiconductors for solar cell applications, silicon carbide, and gallium ni- tride (chapters l l - 13). I am very grateful to the contributors who took the trouble to write a chapter for this volume. I thank Prof. Peter Haasen, Prof. Abbas Ourmazd, PD Dr. Mi- chael Seibt, and Prof. Helmut Feichtinger for many useful proposals and critical comments. I also thank Dr. Jorn Ritterbusch and Mrs. Renate Dotzer of WILEY- VCH for their advice and very agreeable cooperation. Let me finally quote from a letter of one of the authors (A. 0.):“ We wish the reader as much fun with the material as we have had - as much fun, but much less hard work”. Wolfgang Schroter Gottingen, April 2000 Contents 1 Band Theory Applied to Semiconductors . . . . . . . . . . . . . . . . 1 M. Lannoo 2 Optical Properties and Charge Transport . . . . . . . . . . . . . . . . 69 R. G. Ulbrich 3 Intrinsic Point Defects in Semiconductors 1999 . . . . . . . . . . . . 1 2 1 G. D. Watkins 4 Deep Centers in Semiconductors . . . . . . . . . . . . . . . . . . . . 167 H. Feichtinger 5 Point Defects, Diffusion, and Precipitation . . . . . . . . . . . . . . .2 3 1 I: Y: Tan, U. Gosele 6 Dislocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 H. Alexander, H. Teichler 7 Grain Boundaries in Semiconductors . . . . . . . . . . . . . . . . . . 3 77 J. Thibault, J.-L. Rouviere, A. Bourret 8 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 R. Hull, A. Ourmazd, u! D. Rau, P. Schwandel; M. L. Green, R. T. Tung 9 Material Properties of Hydrogenated Amorphous Silicon . . . . . . . 5 41 R. A. Street, K. Winter 10 High-Temperature Properties of Transition Elements in Silicon . . . . 5 97 W Schroter, M. Seibt, D. Gilles 11 Fundamental Aspects of Sic . . . . . . . . . . . . . . . . . . . . . . 661 W J. Choyke, R. P. Devaty 12 New Materials: Semiconductors for Solar Cells . . . . . . . . . . . . 7 15 H. J. Moller 13 New Materials: Gallium Nitride . . . . . . . . . . . . . . . . . . . . . 771 E. R. Weber, J. Kriiger, C. Kisielowski Index.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809 1 Band Theory Applied to Semiconductors Michel Lannoo DCpartement Institut SupCrieur d’Electronique du Nord. Institut d’Electronique et de Microdectronique du Nord. Villeneuve d’A scq. France List of Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 From Discrete States to Bands . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Bloch Theorem for Crystalline Solids . . . . . . . . . . . . . . . . . . . . . 7 1.1.3 The Case of Disordered Systems . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.4 The Effective Mass Approximation (EMA) . . . . . . . . . . . . . . . . . . 1 0 1.1.4.1 Derivation of the Effective Mass Approximation for a Single Band . . . . . 10 1.1.4.2 Applications and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 The Calculation of Crystalline Band Structures . . . . . . . . . . . . . . 14 1.2.1 Ab Initio Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.1.1 The Hartree Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.1.2 The Hartree-Fock Approximation . . . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . . . . . . . . . . . . . 1.2.1.3 The Local Density Approximation 16 1.2.1.4 Beyond Local Density (the G-W Approximation) . . . . . . . . . . . . . . . 17 1.2.1.5 The Pseudopotential Method . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.2 Computational Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.2.1 Plane Wave Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.2.2 Localized Orbital Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.3 Empirical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2.3.1 The Tight Binding Approximation . . . . . . . . . . . . . . . . . . . . . . 21 1.2.3.2 The Empirical Pseudopotential Method . . . . . . . . . . . . . . . . . . . . 22 1.3 Comparison WithExperimentsfor ZincBlendeMaterials . . . . . . . . 2 3 1.3.1 The General Shape of the Bands . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.1.1 The Tight Binding Point of View . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.1.2 The Empirical Pseudopotential Method . . . . . . . . . . . . . . . . . . . . 26 1.3.2 The k-p Description and Effective Masses . . . . . . . . . . . . . . . . . . 2 9 1.3.3 Optical Properties and Excitons . . . . . . . . . . . . . . . . . . . . . . . . 31 1.3.4 Ab Initio Calculations of the Excitonic Spectrum . . . . . . . . . . . . . . . 3 4 1.3.5 A Detailed Comparison with Experiments . . . . . . . . . . . . . . . . . . 34 1.4 Other Crystalline Materials with Lower Symmetry . . . . . . . . . . . . 3 6 1.4.1 General Results for Covalent Materials with Coordination Lower than Four . . . . . . . . . . . . . . . . . . . . . . 36 1.4.2 Chain-Like Structures Like Se and Te . . . . . . . . . . . . . . . . . . . . . 37 1.4.3 Layer Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.4.4 New Classes of Materials: the Antimony Chalcogenides . . . . . . . . . . . 3 9 2 1 Band Theory Applied to Semiconductors 1.5 Non-Crystalline Semiconductors . . . . . . . . . . . . . . . . . . . . . . 44 1.5.1 The Densities of States of Amorphous Semiconductors . . . . . . . . . . . .4 4 1.5.2 Numerical Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.5.3 Dangling Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.5.4 The Case of SiO, Glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.6 Disordered Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.6.1 Definitions of the Different Approximations . . . . . . . . . . . . . . . . .5 2 1.6.2 The Case of Zinc Blende Pseudobinary Alloys . . . . . . . . . . . . . . . .5 4 1.7 Systems with Lower Dimensionality . . . . . . . . . . . . . . . . . . . . 57 1.7.1 Qualitative Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1.7.2 The Envelope Function Approximation . . . . . . . . . . . . . . . . . . . . 59 I . 7.3 Applications of the Envelope Function Approximation . . . . . . . . . . . .6 1 1.7.4 Silicon Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 1.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 List of Symbols and Abbreviations 3 List of Symbols and Abbreviations lattice parameter basis vector of the unit cell bandgap energy conduction-band and valence-band energy electron charge envelope function reciprocal lattice vector resolvent operator hamiltonian Planck constant elements of the hamiltonian total angular momentum joint density of states wave vector orbital angular momentum optical matrix element effective mass density of states momentum vector momentum of electron and hole matrix element of the momentum operator spin vector kinetic energy transfer matrix Bloch's function potential crystal volume perturbation coupling constant splitting energy energy of the state n real and imaginary part of the dielectric constant wave length frequency self-energy operator conductivity atomic states wave function volume of the unit cell atomic volume frequency

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.