Handbook of Number Theory I by József Sándor Babes-Bolyai University of Cluj, Cluj-Napoca, Romania Dragoslav S. Mitrinović formerly of the University of Belgrade, Servia and Borislav Crstici formerly of the Technical University of Timisoara, Romania AC.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-10 1-4020-4215-9 (HB) ISBN-13 978-1-4020-4215-7 (HB) ISBN-10 1-4020-3658-2 (e-book) ISBN-13 978-1-4020-3658-3 (e-book) Published by Springer, P.O. Box 17, 3300 AADordrecht, The Netherlands. www.springeronline.com Printed on acid-free paper 1st ed. 1995. 2nd printing All Rights Reserved © 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands. TABLE OF CONTENTS PREFACE....................................................................................... xxv BASICSYMBOLS............................................................................ 1 BASICNOTATIONS.......................................................................... 2 ChapterI EULER’Sϕ-FUNCTION..................................................................... 9 §I.1 Elementaryinequalitiesfor(cid:1) .............................................. 9 §I.2 Inequalitiesfor(cid:1)(mn) ....................................................... 9 §I.3 Relationsconnecting(cid:1),(cid:2),d ............................................... 10 §I.4 Inequalitiesfor J ,(cid:2) ,(cid:3) ................................................... 11 k k k §I.5 Unitaryanaloguesof J ,(cid:2) ,d ............................................. 12 k k §I.6 Compositionof(cid:1),(cid:2),(cid:3) ..................................................... 13 §I.7 Compositionof(cid:2),(cid:1) ......................................................... 13 §I.8 Onthefunctionn/(cid:1)(n) ...................................................... 14 §I.9 Minimumof(cid:1)(n)/nforconsecutivevaluesofn ....................... 15 §I.10 On(cid:1)(n+1)/(cid:1)(n) ........................................................... 16 §I.11 On((cid:1)(n+1),(cid:1)(n)) ......................................................... 18 §I.12 On(n,(cid:1)(n))................................................................... 18 §I.13 Thedifferenceofconsecutivetotients ................................... 19 §I.14 Nonmonotonicityof(cid:1).(Ameasure) .................................... 19 §I.15 Nonmonotonicityof J ..................................................... 20 k §I.16 Numberofsolutionsof(cid:1)(x)=n! ........................................ 20 §I.17 Numberofsolutionsof(cid:1)(x)=m ........................................ 21 §I.18 Numberofvaluesof(cid:1)lessthanorequaltox ......................... 22 §I.19 Oncompositenwith(cid:1)(n)|(n−1)(Lehmer’sconjecture) ........... 23 §I.20 N(cid:1)umberofcompositen ≤ x with(cid:1)(n)|(n−1) ........................ 24 §I.21 (cid:1)(n)........................................................................ 24 n≤x (cid:2) (cid:3) (cid:1) k §I.22 f ·(cid:1)(k) ............................................................ 25 n k≤n(cid:1) 3 §I.23 On (cid:1)(n)− x2 ........................................................ 25 (cid:4)2 (cid:1)n≤x §I.24 On (cid:1)(n)/n ................................................................ 27 n≤x vi TableofContents (cid:1) §I.25 On J (n)−xk+1/(k+1)(cid:5)(k+1) ................................... 28 k n≤x §I.26 Anexpansionof J .......................................................... 29 (cid:4) k §I.27 On 1/(cid:1)(n)andrelatedquestions .................................. 29 (cid:4) n≤x §I.28 (cid:1)(p−1)for pprime ............................................... 30 p(cid:4)≤x §I.29 On (cid:1)(f(n)), f apolynomial ....................................... 31 (cid:4) n≤x (cid:4) §I.30 (cid:1)∗(n), (cid:1)(n)(cid:1)(n+k)andrelatedresults ................. 31 n≤x n≤x §I.31 AsymptoticformulaeforgeneralizedEulerfunctions ................ 32 (cid:4) §I.32 On(cid:1)(x,n)= 1andonJacobstahl’sarithmetic m≤x,(m,n)=1 function ........................................................................ 33 §I.33 Ontheiterationof(cid:1) ........................................................ 34 §I.34 Iteratesof(cid:1)andtheorderof(cid:1)(k)(n)/(cid:1)(k+1)(n) ........................ 35 §I.35 Normalorderof(cid:6)((cid:1)(n)) ................................................... 36 ChapterII THEARITHMETICALFUNCTIONd(n),ITSGENERALIZATIONSANDITS ANALOGUES.................................................................................. 39 §II.1 Thedivisorfunctionsatconsecutiveintegers .......................... 39 §II.2 Ond(n+i )>···>d(n+i ) .......................................... 40 1 r §II.3 Relationsconnectingd,(cid:6),(cid:2),d ......................................... 41 k §II.4 Ond(mn) ..................................................................... 42 §II.5 Aninequalityford (n) ..................................................... 42 k §II.6 Majorizationforlogd(n)/log2 .......................................... 42 §II.7 maxd(n)andmax(d(n),d(n+1))andgeneralizations .............. 44 n≤x n≤x §II.8 Highlycomposite,superiorhighlycomposite,andlargely compositenumbers.......................................................... 45 §II.9 Congruen(cid:1)cepropertyofd(n) .............................................. 47 §II.10 (cid:3)(x)= d(n)−xlogx −(2(cid:7) −1)x ............................... 47 (cid:1) n≤x §II.11 d(p−1), pprime ..................................................... 49 p≤x (cid:1) §II.12 (cid:3)k(x)= dk(n)−x · Pk−1(logx),k ≥2 ........................... 51 (cid:1) n≤x §II.13 d2(n) ..................................................................... 55 k n≤x(cid:1) §II.14 On (g∗d )(n) .......................................................... 55 k n≤x §II.15 (cid:3) (x).......................................................................... 56 3 §II.16 The(cid:1)divisorprobleminarithmeticprogressions ...................... 57 §II.17 On 1/d (n) .............................................................. 59 k n≤x TableofContents vii §II.18 Averageorderofd (n)overintegersfreeoflargeprime k factors ......................................................................... 60 §II.19 Onasumond andLegendre’ssymbol ................................ 60 k §II.20 Asu(cid:1)mondk,d and(cid:6) ...................................................... 61 §II.21 On d(n)·d(n+N)andrelatedproblems ......................... 61 (cid:1)n≤x §II.22 On d (n)·d(n+1)andrelatedquestions ......................... 63 k n≤x §II.23 Iterationofd ................................................................. 65 §II.24 Ond(cid:1)(f(n))andd(d(f((cid:1)n))), f apolynomial .......................... 66 §II.25 On d(n2+a)and d(m2+n2) ................................ 67 (cid:1)n≤x m,n≤x §II.26 d(|f(r,s)|), f(x,y)abinarycubicform .................... 68 |f(r,s)|≤N §II.27 Weig(cid:1)hteddivisorproblem ................................................. 68 §II.28 On d(n−kt) .......................................................... 69 k<n1/t §II.29 Divisorsumsonsquarefreeorsquarefullintegers .................... 69 §II.30 Exponentialdivisors ....................................................... 71 §II.31 Bi-unitarydivisors .......................................................... 72 §II.32 (cid:1)Sumsoverd(n)·(cid:6)(n),d(n)/(cid:6)(n),(cid:6)(d(n)),(cid:4)(d(n)) ................ 72 §II.33 d(a(n)),a(n)thenumberofabeliangroupswithn n≤x elements ...................................................................... 73 §II.34 d(n)inshortintervals ...................................................... 73 §II.35 Numberofdistinctvaluesofd(n)for1≤n ≤ x ..................... 74 §II.36 Onthedistributionfunctionofd(n) ..................................... 74 §II.37 On(nd(n),(cid:2)(n))=1...................................................... 75 §II.38 Averagevalueforthenumberofdivisorsofsumsa+b ............ 75 ChapterIII SUM-OF-DIVISORSFUNCTION,GENERALIZATIONS,ANALOGUES; PERFECTNUMBERSANDRELATEDPROBLEMS................................ 77 §III.1 Elementaryinequalitieson(cid:2)(n)and(cid:2)(n)/n ......................... 77 §III.2 On(cid:2)(n)/nloglogn ........................................................ 79 §III.3 On(cid:2) (n)/nk ................................................................. 80 (cid:4) k (cid:4) (cid:4) §III.4 (cid:2)(n), (cid:2)(n), (cid:2)(n) ................................... 81 n≤x n≤x,p|n n≤x,(n,k)=1 (cid:2)(n) §III.5 Sumsover ............................................................ 82 n §III.6 Sumsover(cid:2)k(n) ............................................................ 83 §III.7 Onsumsover(cid:2)−(cid:8)(f(n)), f apolynomial(0<(cid:8)<1) ............. 84 viii TableofContents (cid:4) §III.8 On (cid:2)(f(n)), f apolynomial ......................................... 85 n≤x §III.9 Sumson(cid:2)(cid:8)(n),(cid:2)(cid:9)(n+k) ................................................. 85 §III.10 Inequalitiesconnecting(cid:2) ,d,(cid:7),(cid:4) .................................... 86 k §III.11 Sumsover(cid:2)(p−1), paprime ......................................... 87 §III.12 On(cid:2)(mn) ................................................................... 87 §III.13 On(cid:2)(n)≥4(cid:1)(n) .......................................................... 88 §III.14 On(cid:2)(n+i)/(cid:2)(n+i −1)andrelatedtheorems .................... 88 §III.15 On(cid:2)((cid:2)(n));(cid:2)∗((cid:2)∗(n))and(cid:2)(k)(n),(cid:2)((cid:1)(n)), (cid:1)((cid:2)(n)) ...................................................................... 89 §III.16 Divisibilitypropertiesof(cid:2) (n) .......................................... 91 k §III.17 Divisibilityandcongruencespropertiesof(cid:2) (n) .................... 92 k §III.18 Ons(n)=(cid:2)(n)−n ....................................................... 93 §III.19 Numberofdistinctvaluesof(cid:2)(n)/n,n ≤ x ......................... 94 §III.20 Frequencyofintegersm ≤ N withlog((cid:1)(m)/m)≤ x, log((cid:2)(m)/m)≤ y .......................................................... 95 (cid:2)(an −1) §III.21 On andrelatedfunctions ................................... 95 an −1 §III.22 Normalorderof(cid:6)((cid:2) (n)) ................................................ 96 k §III.23 Numberofprimefactorsof((cid:2)(A ),A ) .............................. 97 k k §III.24 On(cid:2)(pa)= xb ............................................................. 97 §III.25 Aninequalityfor(cid:2)∗(n) ................................................... 97 1 §III.26 Sumsover(cid:2)∗(n), ,(cid:2)∗2(n) ................................... 98 log(cid:2)∗(n) k §III.27 Inequalitieson(cid:2)∗,d∗,(cid:2),(cid:3) ............................................. 99 k §III.28 Thesumofexponentialdivisors ........................................ 99 §III.29 Averageorderof(cid:2)e(n) ................................................... 100 §III.30 Numberofdistinctprimedivisorsofanoddperfectnumber ..... 100 §III.31 Boundsfortheprimedivisorsofanoddperfectnumber .......... 102 §III.32 Densityofperfectnumbers .............................................. 104 §III.33 Multiplyperfectandmultiperfectnumbers ........................... 105 §III.34 k-perfectnumbers ......................................................... 106 §III.35 Primitiveabundantnumbers ............................................. 107 §III.36 Deficientnumbers ......................................................... 108 §III.37 Triperfectnumbers ........................................................ 108 §III.38 Quasiperfectnumbers..................................................... 109 §III.39 Almostperfectnumbers .................................................. 110 §III.40 Superperfectnumbers..................................................... 110 §III.41 Superabundantandhighlyabundantnumbers ........................ 111 §III.42 Amicablenumbers ........................................................ 112 §III.43 Weirdnumbers ............................................................. 113 TableofContents ix §III.44 Hyperperfectnumbers .................................................... 114 §III.45 Unitaryperfectnumbers,bi-unitaryperfectnumbers ............... 114 §III.46 Primitiveunitaryabundantnumbers ................................... 115 §III.47 Nonunitaryperfectnumbers ............................................. 116 §III.48 Exponentiallyperfectnumbers.......................................... 116 §III.49 Exponentially,powerfulperfectnumbers ............................. 117 §III.50 Practicalnumbers .......................................................... 118 §III.51 Unitaryharmonicnumbers .............................................. 119 §III.52 PerfectGaussianintegers ................................................ 120 ChapterIV P,p,B,β,ANDRELATEDFUNCTIONS.............................................. 121 §IV.1 Sumsover P(n), p(n), P(n)/p(n),1/Pr(n) .......................... 121 §IV.2 SumsoverlogP(n) ........................................................ 122 §IV.3 Sumsover P(n)−(cid:6)(n)and P(n)−(cid:4)(n) .................................... 123 §IV.4 Sumson1/p(n),(cid:6)(n)/p(n),d(n)/p(n) ............................... 123 §IV.5 Densityofreducibleintegers ............................................. 124 §IV.6 On p(n!+1), P(n!+1), P(F ) ........................................ 125 n §IV.7 Greatestprimefactorofanarithmeticprogression ................... 125 §IV.8 P(n2+1)and P(n4+1) ................................................. 126 §IV.9 P(an −bn), P(ap−bp) .................................................. 127 §IV.10 P(u )forarecurrencesequence(u ) .................................. 128 n n §IV.11 Greatestprimefactorofaproduct ...................................... 129 §IV.12 P(f(x)), f apolynomial ................................................. 130 §IV.13 Greatestprimefactorofaquadraticpolynomial ..................... 131 §IV.14 P(p+a), p(p+a), pprime ........................................... 132 §IV.15 On P(axm + byn) ........................................................ 132 §IV.16 Intervalscontainingnumberswithoutlargeprimefactors ......... 133 §IV.17 On P(n)/P(n+1) ........................................................ 134 §IV.18 Consecutiveprimedivisors .............................................. 135 §IV.19 Greatestprimefactorofconsecutiveintegers ........................ 135 §IV.20 Frequencyofnumberscontainingprimefactorsofacertain relativemagnitude ......................................................... 136 §IV.21 Integerswithoutlargeprimefactors.Thefunction(cid:3)(x,y) andDickman’sfunction .................................................. 136 §IV.22 Function(cid:3)(x,y;a,q).Integerswithoutlargeprimefactorsin arithmeticprogressions ................................................... 141 §IV.23 On(n,(cid:9)(n))=1 ........................................................... 143 B(n) §IV.24 Sumsover(cid:9) (n),B (n),B(n)−(cid:9)(n), , k k (cid:9)(n) B(n) − (cid:9)(n) ............................................................... 143 P(n) x TableofContents (cid:9)(n) P(n) §IV.25 Sumsover P(n), (cid:9)(n), B(n)− P1(n)−···− Pn−1(n) ........... 145 B(n) §IV.26 Distributionof ....................................................... 146 (cid:9)(n) §IV.27 On(−1)B(n) ................................................................. 146 §IV.28 SumsoverB1(n), P(n)/B1(n),B1(n)/B(n),1/B1(n), etc. ............................................................................ 147 §IV.29 NumbersnwiththepropertyB(n)=B(n+1) ...................... 148 §IV.30 On(cid:1)greatestprimedivisorsofsumsofintegers ....................... 149 §IV.31 On f(P(n)), f acertainarithmeticfunction .................... 150 n≤x §IV.32 On(cid:6)(x,y)andBuchstab’sfunction ................................... 151 §IV.33 Onthepartitionofprimesintotwosubsetswithnearlythe samenumberofproducts ................................................. 153 ChapterV (cid:6)(n),(cid:4)(n)ANDRELATEDFUNCTIONS............................................... 155 §V.1 Averageorderof(cid:6),(cid:4),(cid:4)−(cid:6),(cid:4) ....................................... 155 k §V.2 Sumsover(cid:6)2(n),(cid:6)k(n) .................................................... 155 §V.3 Sumsover((cid:6)(n)−loglogx)2 ............................................ 156 (cid:1) 1 (cid:1) (cid:4)(n) §V.4 , ,etc. .............................................. 157 (cid:6)(n) (cid:6)(n) (cid:1)2≤n≤x 2≤n≤x §V.5 (cid:6)k(p−1)(pprime) .................................................... 159 (cid:1)p≤n §V.6 (cid:6)(f(p), f polynomial(pprime) .................................... 160 (cid:1)p≤n §V.7 z(cid:6)(n)andrelatedsums .................................................. 161 n≤x §V.8 Sumsover(cid:10)(n)=(−1)(cid:4)(n) ................................................ 162 §V.9 Sumsovern−1/(cid:6)(n),n−1/(cid:4)(n) ............................................... 162 §V.10 Sumsond(n)(cid:6)(n−1), d (n)(cid:6)(n) .................................... 163 k (cid:6)(n) (cid:6)(n) §V.11 Sumson , ....................................................... 163 P(n) (cid:9)(n) §V.12 (cid:6)(a(n)),(cid:6)(d(n)),etc. ...................................................... 164 (cid:4)(n)−(cid:6)(n) (cid:4)(n)−(cid:6)(n) §V.13 , ,etc. ........................................ 165 P(n) (cid:9)(n) §V.14 Onthenumberofintegersn ≤ x with(cid:4)(n)−(cid:6)(n)=k ........... 165 §V.15 Estimatesoftype(cid:6)(n)≤c·logn/loglogn .......................... 167 §V.16 On(cid:6)(n)−(cid:6)(n+1)or(cid:6)(m)−(cid:6)(n) ................................... 168 §V.17 Thevaluesof(cid:6)onconsecutiveintegers ................................ 169 §V.18 Localgrowthof(cid:6)atconsecutiveintegers ............................. 170 §V.19 Normalorderof(cid:6)((cid:1)(n)) .................................................. 170 TableofContents xi §V.20 Function(cid:6)(n;u,v) ......................................................... 171 §V.21 Onthenumberofvaluesn ≤ x with(cid:6)(n)> f(x) ................... 172 §V.22 On(cid:6)(2p−1),(cid:4)(an −1)/n .............................................. 172 §V.23 (cid:6)-highlycomposite,(cid:6)-largelycompositeand(cid:6)-interesting numbers ....................................................................... 173 §V.24 On(cid:6)(n)/n .................................................................... 173 §V.25 On(n,(cid:6)(n))=1and(n,(cid:4)(n))=1 .................................... 174 §V.26 On(cid:6)((n,(cid:1)(n)))=k ........................................................ 174 §V.27 Gaussianlawoferrorsfor(cid:6) .............................................. 175 §V.28 Onthestatisticalpropertyofprimefactorsofnaturalnumbers inarithmeticprogressions ................................................. 176 §V.29 Distributionofvaluesof(cid:6)inshortintervals .......................... 177 §V.30 Distributionof(cid:6)inthesieveofEratosthenes ......................... 177 §V.31 Numberofn ≤ x with(cid:4)(n)=i ......................................... 177 §V.32 Numberofn ≤ x with(cid:6)(n)=i ......................................... 180 §V.33 Thefunctions(cid:6)(n;E)andS(x,y;E,(cid:6)) ............................... 183 §V.34 Sumsetswithmanyprimefactors ........................................ 184 §V.35 Ontheintegersnforwhich(cid:4)(n)=k .................................. 185 ChapterVI FUNCTIONµ;k-FREEANDk-FULLNUMBERS................................... 187 §VI.1 Averageorderof(cid:11)(n) ..................................................... 187 §VI.2 Estimatesfor M(x).Mertens’conjecture .............................. 187 §VI.3 (cid:11)inshortintervals ......................................................... 189 §VI.4 Sumsinvolving(cid:11)(n)with p(n)> y or P(n)< y,n ≤ x. Squarefreenumberswithrestrictedprimefactors.................... 189 §VI.5 Oscillatorypropertiesof M(cid:1)(x)andrelatedresults ................... 190 §VI.6 Thefunction M(n,T)= (cid:11)(n) .................................. 192 d|n,d≤T §VI.7 Mo¨biusfunctionoforderk ............................................... 193 §VI.8 Sumson(cid:11)(n)/n,(cid:11)(n)/n2,(cid:11)2(n)/n ................................... 194 §VI.9 Sumson(cid:11)(n)logn/n,(cid:11)(n)logn/n2 .................................. 195 §VI.10 Selberg’sformu(cid:5)la .(cid:6)......................................................... 196 x §VI.11 Asumon(cid:11)(n) ....................................................... 197 n §VI.12 Asumon(cid:11)(n)f(n)/n, f-multiplicative,0≤ f(p)≤1 .......... 197 §VI.13 Gandhi’sformula .......................................................... 197 §VI.14 Anextremalpropertyof(cid:11) ............................................... 198 §VI.15 OnasumconnectedwiththeMo¨biusfunction ...................... 199 (cid:11)2(n) (cid:11)2(n) (cid:11)2(n) (cid:11)(n) §VI.16 Sumsover , , , ............................. 199 (cid:6)(n) (cid:6)2(n) (cid:1)(n) nd(n) xii TableofContents §VI.17 Thedistributionofintegershavingagivennumberofprime factors ....................................................................... 200 §VI.18 Numberofsquarefreeintegers≤ x .................................... 201 §VI.19 Onsquarefreeintegers .................................................... 202 §VI.20 Intervalscontainingasquarefreeinteger .............................. 202 §VI.21 Distributionofsquarefreenumbers .................................... 204 §VI.22 Onthefrequencyofpairsofsquarefreenumbers ................... 205 §VI.23 Smallestsquarefreeintegerinanarithmeticprogression .......... 206 §VI.24 Thegreatestsquarefreedivisorofn .................................... 208 §VI.25 Estimatesinvolvingthegreatestsquarefreedivisorofn ........... 209 §VI.26 Estimatesfor N(x,y)=card{n ≤ x :(cid:7)(n)≤ y} .................. 210 §VI.27 Numberofnon-squarefreeodd,positiveintegers≤ x .............. 210 §VI.28 Numberofsquarefreenumbers≤ X whicharequadratic residues(modp) ........................................................... 211 §VI.29 Squarefreeintegersinnonlinearsequences........................... 211 §VI.30 Sumsetscontainingsquarefreeandk-freeintegers.................. 212 §VI.31 OntheMo¨biusfunction .................................................. 213 §VI.32 Numberofk-freeintegers≤ x .......................................... 213 §VI.33 Numberofk-freeintegers≤ x,whicharerelativelyprimeto n .............................................................................. 216 §VI.34 Schnirelmanndensityofthek-freeintegers .......................... 217 §VI.35 Powerfreeintegersrepresentedbylinearforms ..................... 218 §VI.36 Onthepower-freevalueofapolynomial ............................. 218 §VI.37 Numberofr-freeintegers≤ x thatareinarithmetic progression ................................................................. 220 §VI.38 Squarefreenumbersassumsoftwosquares ......................... 221 §VI.39 Distributionofunitaryk-freeintegers ................................. 221 §VI.40 Countingfunctionofthe(k,r)-integers ............................... 222 §VI.41 Asymptoticformulaeforpowerfulnumbers ......................... 222 §VI.42 Maximalk-fulldivisorofaninteger ................................... 226 §VI.43 Numberofsquarefullintegersbetweensuccessivesquares ....... 226 ChapterVII FUNCTIONπ(x),ψ(x),θ(x),ANDTHESEQUENCEOFPRIMENUMBERS 227 §VII.1 Estimateson(cid:4)(x).Chebyshev’stheorem.Theprime numbertheorem .............(cid:7).............................................. 227 x dy §VII.2 Approximationof(cid:4)(x)by .................................. 228 logy 2 §VII.3 On(cid:4)(x)−lix.Signchanges ........................................... 229 §VII.4 On(cid:4)(x)−(cid:4)(x −y)for y = x(cid:12) ....................................... 232 §VII.5 On(cid:4)(cid:1)(x +y)≤(cid:4)(x)+(cid:4)(y)............................................ 235 §VII.6 On ((cid:4)∗(k)−(cid:4)(k)) ................................................. 237 q≤k≤n