ebook img

Handbook of Multivariate Process Capability Indices PDF

353 Pages·2021·12.743 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of Multivariate Process Capability Indices

Handbook of Multivariate Process Capability Indices Handbook of Multivariate Process Capability Indices Ashis Kumar Chakraborty Moutushi Chatterjee First edition published 2021 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2021 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright. com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis- [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Library of Congress Control Number: 2020946029 ISBN: 978-0-367-02997-5 (hbk) ISBN: 978-0-429-29834-9 (ebk) Dedicated to wife, Purnima Chakraborty, and daughter, Paulami Chakraborty, of the first author & parents, Subhash Chatterjee and Reba Chatterjee, of the second author Contents Preface xiii Acknowledgements xv Biography of First Author xvii Biography of Second Author xviii 1 Introduction 1 1.1 Concept of Process Capability Index . . . . . . . . . . . . . . 2 1.2 Process Capability Indices in Six Sigma, Lean Six Sigma, and Design for Six Sigma (DFSS) . . . . . . . . . . . . . . . . . . 5 1.3 Concept of Multivariate Process Capability Index (MPCI) . 7 1.4 Some Uses of Process Capability Indices . . . . . . . . . . . 8 1.5 Some Applications of MPCIs . . . . . . . . . . . . . . . . . . 10 1.6 Overview of the Chapters . . . . . . . . . . . . . . . . . . . . 12 Bibliography 15 2 Some Useful Concepts of Univariate and Multivariate Statis- tics 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Univariate Statistics . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Normal Distribution . . . . . . . . . . . . . . . . . . . 20 2.2.1.1 Properties of Normal Distribution . . . . . . 21 2.2.2 Radial Error Distribution . . . . . . . . . . . . . . . . 23 2.2.3 Folded Normal Distribution . . . . . . . . . . . . . . . 24 2.2.4 Uniform Distribution . . . . . . . . . . . . . . . . . . . 26 2.2.5 Log-Normal Distribution. . . . . . . . . . . . . . . . . 27 2.2.6 Exponential Distribution . . . . . . . . . . . . . . . . 28 2.3 EstimationofProcessMeanandVarianceUsingControlChart Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.1 EstimationofProcessMeanandVarianceBasedonX− R Chart Information . . . . . . . . . . . . . . . . . . . 31 2.3.2 EstimationofProcessMeanandVarianceBasedonX− S Chart Information . . . . . . . . . . . . . . . . . . . 32 2.4 Some Bayesian Concepts . . . . . . . . . . . . . . . . . . . . 33 vii Contents viii 2.5 Multivariate Statistics . . . . . . . . . . . . . . . . . . . . . . 34 2.5.1 Multivariate Normal Distribution . . . . . . . . . . . . 35 2.5.2 Multivariate Folded Normal Distribution. . . . . . . . 36 2.6 Principal Component Analysis (PCA) . . . . . . . . . . . . . 38 2.7 Delta Method . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Bibliography 41 3 Univariate Process Capability Indices 46 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Univariate Process Capability Indices for Symmetric Specifica- tion Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 UnificationofUnivariatePCIsforSymmetricSpecifica- tion Limits . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Univariate Process Capability Indices for Asymmetric Specifi- cation Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.1 Unification of Univariate PCIs for Asymmetric Specifi- cation Limits . . . . . . . . . . . . . . . . . . . . . . . 53 3.4 Univariate Process Capability Indices for Unilateral (One- Sided) Specification Limits . . . . . . . . . . . . . . . . . . . 56 3.4.1 Unification of Univariate PCIs for Unilateral Specifica- tion Limits . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5 Univariate Process Capability Indices for Non-Normal Distri- butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6 Univariate Process Capability Indices PNC . . . . . . . . . . 67 3.7 UnivariateProcessCapabilityAssessmentsUsingBayesianAp- proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 68 Bibliography 70 4 Bivariate Process Capability Indices (BPCIs) 78 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2 Bivariate Generalization of Univariate PCIs for Bilateral Spec- ification Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Bivariate Generalization of Univariate PCIs for Unilateral Specification Limits . . . . . . . . . . . . . . . . . . . . . . . 87 4.4 Bivariate PCIs for Circular Specification Region . . . . . . . 88 4.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 105 4.5.1 Example 1. . . . . . . . . . . . . . . . . . . . . . . . . 105 4.5.2 Example 2. . . . . . . . . . . . . . . . . . . . . . . . . 106 4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 107 Bibliography 108 Contents ix 5 Multivariate Process Capability Indices for Bilateral Spec- ification Region Based on Principal Component Analysis (PCA) 112 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.2 MPCIs Analogous to Univariate PCIs viz., C , C , C , and p pk pm C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 pmk 5.2.1 Probability-Based MPCI Based on First Few Principal Components . . . . . . . . . . . . . . . . . . . . . . . 115 5.3 PCA-Based MPCIs with Unequal Weighting . . . . . . . . . 117 5.4 PCA-Based MPCIs Similar to Taam et al.’s [12] Ratio-Based MPCIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.5 MPCIs Based on First Principal Component Only . . . . . . 120 5.6 Some Other PCA-Based MPCIs . . . . . . . . . . . . . . . . 123 5.7 A Real-Life Example . . . . . . . . . . . . . . . . . . . . . . 123 5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Bibliography 127 6 Ratio-Based Multivariate Process Capability Indices for Symmetric Specification Region 130 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.2 MPCIs Defined as Multivariate Analogue of C . . . . . . . . 131 p 6.3 MPCIs Defined as Multivariate Analogue of C . . . . . . . 142 pk 6.4 MPCIs Defined as Multivariate Analogue of C . . . . . . . 147 pm 6.5 C (u,v)− A Super-structue of MPCIs . . . . . . . . . . . 157 G 6.6 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . 160 6.7 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . 163 Bibliography 164 7 Multivariate Process Capability Indices for Asymmetric Specification Region 168 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2 MPCIs Generalizing C(cid:48)(cid:48)(u,v) for u = 0,1 and v = 0,1 − A p Geometric Approach (Grau [11]) . . . . . . . . . . . . . . . . 169 7.3 Multivariate Analogue of C(cid:48)(cid:48)(u,v), for u=0,1 and v =0,1 − p An Alternative Approach . . . . . . . . . . . . . . . . . . . . 174 7.3.1 Interrelationships between the Member Indices of C (u,v) for u=0,1 and v =0,1 . . . . . . . . . . . . 175 M 7.4 Threshold Value of C (0,0) . . . . . . . . . . . . . . . . . . 177 M 7.4.1 For Bivariate Case . . . . . . . . . . . . . . . . . . . . 177 7.4.2 For Multivariate Case . . . . . . . . . . . . . . . . . . 181 7.4.3 Plug-in Estimators of the Member Indices of C (u,v) M for u = 0,1 and v = 0,1 and Their Estimation Proce- dures . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.5 A Real-Life Example . . . . . . . . . . . . . . . . . . . . . . 184

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.