HANDBOOK OF MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION THE ELSEVIER AND MICCAI SOCIETY BOOK SERIES Advisory Board Nicholas Ayache James S. Duncan Alex Frangi Hayit Greenspan Pierre Jannin Anne Martel Xavier Pennec Terry Peters Daniel Rueckert Milan Sonka Jay Tian S. Kevin Zhou Titles: Balocco, A., et al.,Computing and Visualizationfor IntravascularImaging and Computer AssistedStenting, 9780128110188 Dalca, A.V.,et al., ImagingGenetics, 9780128139684 Depeursinge, A., et al.,Biomedical Texture Analysis,9780128121337 Munsell,B., et al.,Connectomics, 9780128138380 Pennec, X., et al., Riemannian Geometric Statistics in Medical Image Analysis, 9780128147252 Wu, G., andSabuncu, M., Machine Learning andMedical Imaging,9780128040768 Zhou S.K.,Medical Image Recognition, Segmentation and Parsing,9780128025819 Zhou, S.K., et al.,Deep Learningfor Medical Image Analysis,9780128104088 Zhou, S.K., et al.,Handbook of Medical Image Computing and Computer Assisted Intervention,9780128161760 HANDBOOK OF MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION Editedby S.KEVINZHOU InstituteofComputingTechnology ChineseAcademyofSciences Beijing,China DANIELRUECKERT ImperialCollegeLondon London,UnitedKingdom GABORFICHTINGER Queen’sUniversity Kingston,ON,Canada AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2020ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenter andtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-816176-0 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MaraConner AcquisitionEditor:TimPitts EditorialProjectManager:LeticiaM.Lima ProductionProjectManager:SelvarajRaviraj Designer:ChristianJ.Bilbow TypesetbyVTeX Contents Contributors xvii Acknowledgment xxvii 1. Imagesynthesisandsuperresolutioninmedicalimaging 1 JerryL.Prince,AaronCarass,CanZhao,BlakeE.Dewey,SnehashisRoy,DzungL.Pham 1.1. Introduction 1 1.2. Imagesynthesis 2 1.3. Superresolution 12 1.4. Conclusion 18 References 19 2. Machinelearningforimagereconstruction 25 KerstinHammernik,FlorianKnoll 2.1. Inverseproblemsinimaging 26 2.2. Unsupervisedlearninginimagereconstruction 30 2.3. Supervisedlearninginimagereconstruction 32 2.4. Trainingdata 48 2.5. Lossfunctionsandevaluationofimagequality 49 2.6. Discussion 53 Acknowledgments 54 References 54 3. LiverlesiondetectioninCTusingdeeplearningtechniques 65 AviBen-Cohen,HayitGreenspan 3.1. Introduction 65 3.2. FullyconvolutionalnetworkforliverlesiondetectioninCTexaminations 68 3.3. FullyconvolutionalnetworkforCTtoPETsynthesistoaugmentmalignantliverlesion detection 77 3.4. Discussionandconclusions 84 Acknowledgments 87 References 87 4. CADinlung 91 KensakuMori 4.1. Overview 91 4.2. OriginoflungCAD 92 4.3. LungCADsystems 92 4.4. Localizeddisease 93 v vi Contents 4.5. Diffuselungdisease 96 4.6. Anatomicalstructureextraction 98 References 104 5. Textmininganddeeplearningfordiseaseclassification 109 YifanPeng,ZizhaoZhang,XiaosongWang,LinYang,LeLu 5.1. Introduction 109 5.2. Literaturereview 110 5.3. Casestudy1:textmininginradiologyreportsandimages 114 5.4. Casestudy2:textmininginpathologyreportsandimages 122 5.5. Conclusionandfuturework 129 Acknowledgments 130 References 130 6. Multiatlassegmentation 137 BennettA.Landman,IlwooLyu,YuankaiHuo,AndrewJ.Asman 6.1. Introduction 138 6.2. Historyofatlas-basedsegmentation 139 6.3. Mathematicalframework 146 6.4. Connectionbetweenmultiatlassegmentationandmachinelearning 154 6.5. Multiatlassegmentationusingmachinelearning 154 6.6. Machinelearningusingmultiatlassegmentation 155 6.7. Integratingmultiatlassegmentationandmachinelearning 155 6.8. Challengesandapplications 155 6.9. Unsolvedproblems 156 Glossary 157 References 158 7. Segmentationusingadversarialimage-to-imagenetworks 165 DongYang,TaoXiong,DaguangXu,S.KevinZhou 7.1. Introduction 165 7.2. Segmentationusinganadversarialimage-to-imagenetwork 169 7.3. Volumetricdomainadaptationwithintrinsicsemanticcycleconsistency 172 References 181 8. Multimodalmedicalvolumestranslationandsegmentationwithgenerative adversarialnetwork 183 ZizhaoZhang,LinYang,YefengZheng 8.1. Introduction 183 8.2. Literaturereview 186 8.3. Preliminary 188 8.4. Method 190 Contents vii 8.5. Networkarchitectureandtrainingdetails 192 8.6. Experimentalresults 194 8.7. Conclusions 200 References 201 9. Landmarkdetectionandmultiorgansegmentation:Representationsand supervisedapproaches 205 S.KevinZhou,ZhoubingXu 9.1. Introduction 205 9.2. Landmarkdetection 207 9.3. Multiorgansegmentation 217 9.4. Conclusion 227 References 227 10.Deepmultilevelcontextualnetworksforbiomedicalimagesegmentation 231 HaoChen,QiDou,XiaojuanQi,Jie-ZhiCheng,Pheng-AnnHeng 10.1. Introduction 231 10.2. Relatedwork 233 10.3. Method 235 10.4. Experimentsandresults 237 10.5. Discussionandconclusion 244 Acknowledgment 244 References 245 11.LOGISMOS-JEI:Segmentationusingoptimalgraphsearchandjust-enough interaction 249 HonghaiZhang,KyungmooLee,ZhiChen,SatyanandaKashyap,MilanSonka 11.1. Introduction 249 11.2. LOGISMOS 251 11.3. Just-enoughinteraction 256 11.4. RetinalOCTsegmentation 257 11.5. CoronaryOCTsegmentation 260 11.6. KneeMRsegmentation 265 11.7. Modularapplicationdesign 268 11.8. Conclusion 269 Acknowledgments 270 References 270 12.Deformablemodels,sparsityandlearning-basedsegmentationforcardiacMRI basedanalytics 273 DimitrisN.Metaxas,ZhennanYan 12.1. Introduction 273 viii Contents 12.2. Deeplearningbasedsegmentationofventricles 277 12.3. Shaperefinementbysparseshapecomposition 283 12.4. 3Dmodeling 285 12.5. Conclusionandfuturedirections 288 References 288 13.Imageregistrationwithslidingmotion 293 MattiasP.Heinrich,BartłomiejW.Papiez˙ 13.1. Challengesofmotiondiscontinuitiesinmedicalimaging 293 13.2. SlidingpreservingregularizationforDemons 296 13.3. Discreteoptimizationfordisplacements 303 13.4. Imageregistrationforcancerapplications 311 13.5. Conclusions 313 References 314 14.Imageregistrationusingmachineanddeeplearning 319 XiaohuanCao,JingfanFan,PeiDong,SaharAhmad,Pew-ThianYap,DinggangShen 14.1. Introduction 319 14.2. Machine-learning-basedregistration 322 14.3. Machine-learning-basedmultimodalregistration 326 14.4. Deep-learning-basedregistration 332 References 338 15.ImagingbiomarkersinAlzheimer’sdisease 343 CaroleH.Sudre,M.JorgeCardoso,MarcModat,SebastienOurselin 15.1. Introduction 344 15.2. Rangeofimagingmodalitiesandassociatedbiomarkers 345 15.3. Biomarkerextractionevolution 349 15.4. Biomarkersinpractice 353 15.5. Biomarkers’strategies:practicalexamples 356 15.6. FutureavenuesofimageanalysisforbiomarkersinAlzheimer’sdisease 360 References 363 16.Machinelearningbasedimagingbiomarkersinlargescalepopulationstudies: Aneuroimagingperspective 379 GurayErus,MohamadHabes,ChristosDavatzikos 16.1. Introduction 379 16.2. Largescalepopulationstudiesinneuroimageanalysis:stepstowardsdimensional neuroimaging;harmonizationchallenges 382 16.3. Unsupervisedpatternlearningfordimensionalityreductionofneuroimagingdata 385 16.4. Supervisedclassificationbasedimagingbiomarkersfordiseasediagnosis 387 16.5. Multivariatepatternregressionforbrainageprediction 389 Contents ix 16.6. Deeplearninginneuroimaginganalysis 392 16.7. Revealingheterogeneityofimagingpatternsofbraindiseases 393 16.8. Conclusions 394 References 395 17.Imagingbiomarkersforcardiovasculardiseases 401 AvanSuinesiaputra,KathleenGilbert,BeauPontre,AlistairA.Young 17.1. Introduction 401 17.2. Cardiacimaging 402 17.3. Cardiacshapeandfunction 404 17.4. Cardiacmotion 409 17.5. Coronaryandvascularfunction 412 17.6. Myocardialstructure 416 17.7. Population-basedcardiacimagebiomarkers 419 References 420 18.Radiomics 429 MartijnP.A.Starmans,SebastianR.vanderVoort,JoseM.CastilloTovar,JifkeF.Veenland, StefanKlein,WiroJ.Niessen 18.1. Introduction 430 18.2. Dataacquisition&preparation 431 18.3. Segmentation 434 18.4. Features 437 18.5. Datamining 441 18.6. Studydesign 444 18.7. Infrastructure 447 18.8. Conclusion 451 Acknowledgment 452 References 452 19.Randomforestsinmedicalimagecomputing 457 EnderKonukoglu,BenGlocker 19.1. Adifferentwaytousecontext 457 19.2. Featureselectionandensembling 459 19.3. Algorithmbasics 460 19.4. Applications 467 19.5. Conclusions 476 References 476 20.Convolutionalneuralnetworks 481 JonasTeuwen,NikitaMoriakov 20.1. Introduction 481