Table Of ContentMethodology of Educational Measurement and Assessment
Matthias von Davier
Young-Sun Lee Editors
Handbook of
Diagnostic
Classifi cation
Models
Models and Model Extensions,
Applications, Software Packages
Methodology of Educational Measurement
and Assessment
SeriesEditors
BernardVeldkamp,ResearchCenterforExaminationsandCertification(RCEC),
UniversityofTwente,Enschede,TheNetherlands
MatthiasvonDavier,NationalBoardofMedicalExaminers(NBME),Philadelphia,
USA
This book series collates key contributions to a fast-developing field of education
research.Itisaninternationalforumfortheoreticalandempiricalstudiesexploring
new and existing methods of collecting, analyzing, and reporting data from
educational measurements and assessments. Covering a high-profile topic from
multipleviewpoints,itaimstofosterabroaderunderstandingoffreshdevelopments
asinnovativesoftwaretoolsandnewconceptssuchascompetencymodelsandskills
diagnosis continue to gain traction in educational institutions around the world.
Methodology of Educational Measurement and Assessment offers readers reliable
critical evaluations, reviews and comparisons of existing methodologies alongside
authoritative analysis and commentary on new and emerging approaches. It will
showcase empirical research on applications, examine issues such as reliability,
validity, and comparability, and help keep readers up tospeed on developments in
statistical modeling approaches. The fully peer-reviewed publications in the series
cover measurement and assessment at all levels of education and feature work
by academics and education professionals from around the world. Providing an
authoritative central clearing-house for research in a core sector in education, the
seriesformsamajorcontributiontotheinternationalliterature.
Moreinformationaboutthisseriesathttp://www.springer.com/series/13206
Matthias von Davier • Young-Sun Lee
Editors
Handbook of Diagnostic
Classification Models
Models and Model Extensions, Applications,
Software Packages
123
Editors
MatthiasvonDavier Young-SunLee
NationalBoardofMedical TeachersCollege
Examiners(NBME) ColumbiaUniversity
Philadelphia,PA,USA NewYork,NY,USA
ISSN2367-170X ISSN2367-1718 (electronic)
MethodologyofEducationalMeasurementandAssessment
ISBN978-3-030-05583-7 ISBN978-3-030-05584-4 (eBook)
https://doi.org/10.1007/978-3-030-05584-4
©SpringerNatureSwitzerlandAG2019
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook
arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor
theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany
errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional
claimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG.
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Preface
TheHandbookofDiagnosticClassificationModelsrepresentsacollectionofchap-
ters reviewing diagnostic models, their applications, and descriptions of software
tool,writtenbyleadingexpertsinthefield.Thisvolumecoversmost(onecannever
claimcompleteness)ofthecurrentmajormodelingfamiliesandapproachesaswell
as provides a resource that can be used for self-study, teaching, or research that
appliesorextendsthematerialsincludedinthebook.
Whilevirtuallyanyprojectofthistypetakeslongerthanexpected,andmanywill
betemptedtoremindusthatMurphy’slawstrikesalmostsurely,wewereamazed
bythewillingnessofallcontributorstoputinthehourstofinishtheirchaptersand
to review other chapters and, finally, to revise their contributions in order to help
puttingtogetheracoherentvolume.Wehopethatthisprocess,togetherwithsome
occasionalassistancefromtheeditorsandthepublisher,helpedtocompileamulti-
authoredworktogetherthatcoversmostaspectsofdoingresearcharounddiagnostic
modeling.
We also want to remind readers as well as ourselves of colleagues who passed
awayandwholeaveavoidintheresearchcommunity.WelostKikumiTatsuoka,of
whomonecantruthfullysaythatherrulespaceapproachisoneofthemajorroots,
maybe even the most important one, of this field. In her long career, she shaped
many aspects of diagnostic modeling, and we should recall that, among these, the
Q-matrixisoneofthecentralbuildingblockspresentinthevastmajorityofthese
methods.Therulespacemethodisdescribedalongwithotherearlyapproachesin
Chap.1.
We furthermore would like to remember Lou DiBello, who made important
contributions to the field, notably in his modified rule space work, and his work
on the unified model together with colleagues. The work around extensions of the
unified model is described in Chap. 3. We also want to remind readers of Wen-
ChungWangwhojustrecentlypassedaway.Wen-Chungandhiscoauthorsworked
onmanytopicsarounddiagnosticmodelsandotherpsychometricapproaches.His
workaroundDIFmethodsforusewithdiagnosticmodelingapproachesisfoundin
Chap.18.Wehopethatthefriendswelostwouldhavelikedthisvolume.
v
vi Preface
Ending on a more positive note: working in a dynamic field that produces
new knowledge every day, we are aware that the handbook is one stepping stone
on the long path to fully understanding the potential of these powerful modeling
approaches. We are expecting to see books that extend the material we have put
togetherhere;moreover,weexpecttoseethishandbookbereplacedorsuperseded
byaneweditioninacoupleofyears.Ifwearelucky,wemaybeinvolvedinputting
togethersomeofthechaptersofthesefuturecollectionsdescribingwhatwillthen
bethestateoftheartindiagnosticmodeling.
Philadelphia,PA,USA MatthiasvonDavier
NewYork,NY,USA Young-SunLee
Contents
1 Introduction:FromLatentClassestoCognitive
DiagnosticModels .......................................................... 1
MatthiasvonDavierandYoung-SunLee
PartI ApproachestoCognitiveDiagnosis
2 Nonparametric ItemResponse Theory andMokken Scale
Analysis,withRelationstoLatentClassModelsandCognitive
DiagnosticModels .......................................................... 21
L.AndriesvanderArk,GinaRossi,andKlaasSijtsma
3 TheReparameterizedUnifiedModelSystem:ADiagnostic
AssessmentModelingApproach.......................................... 47
WilliamStout,RobertHenson,LouDiBello,andBenjaminShear
4 BayesianNetworks ......................................................... 81
RussellG.AlmondandJuan-DiegoZapata-Rivera
5 NonparametricMethodsinCognitivelyDiagnosticAssessment ...... 107
Chia-YiChiuandHans-FriedrichKöhn
6 TheGeneralDiagnosticModel............................................ 133
MatthiasvonDavier
7 TheG-DINAModelFramework.......................................... 155
JimmydelaTorreandNathanD.Minchen
8 LoglinearCognitiveDiagnosticModel(LCDM)........................ 171
RobertHensonandJonathanL.Templin
9 Diagnostic Modeling of Skill Hierarchies and Cognitive
ProcesseswithMLTM-D................................................... 187
SusanE.Embretson
vii
viii Contents
10 ExplanatoryCognitiveDiagnosticModels............................... 207
YoonSooParkandYoung-SunLee
11 InsightsfromReparameterizedDINAandBeyond..................... 223
LawrenceT.DeCarlo
PartII SpecialTopics
12 Q-MatrixLearningviaLatentVariableSelection
andIdentifiability........................................................... 247
JingchenLiuandHyeon-AhKang
13 Global-andItem-LevelModelFitIndices............................... 265
ZhuangzhuangHanandMatthewS.Johnson
14 ExploratoryDataAnalysisforCognitiveDiagnosis:Stochastic
Co-blockmodelandSpectralCo-clustering.............................. 287
YunxiaoChenandXiaoouLi
15 RecentDevelopmentsinCognitiveDiagnosticComputerized
AdaptiveTesting(CD-CAT):AComprehensiveReview............... 307
XiaofengYu,YingCheng,andHua-HuaChang
16 IdentifiabilityandCognitiveDiagnosisModels ......................... 333
GongjunXu
17 MeasuresofAgreement:Reliability,ClassificationAccuracy,
andClassificationConsistency............................................ 359
SandipSinharayandMatthewS.Johnson
18 DifferentialItemFunctioninginDiagnosticClassificationModels... 379
Xue-LanQiu,XiaominLi,andWen-ChungWang
19 Bifactor MIRT as an Appealing and Related Alternative
toCDMsinthePresenceofSkillAttributeContinuity................. 395
DanielM.Bolt
PartIII Applications
20 UtilizingProcessDataforCognitiveDiagnosis.......................... 421
HongJiao,DandanLiao,andPeidaZhan
21 Application of Cognitive Diagnostic Models to Learning
andAssessmentSystems................................................... 437
BenjaminDeonovic,PravinChopade,MichaelYudelson,
JimmydelaTorre,andAlinaA.vonDavier
22 CDMs in Vocational Education: Assessment and Usage
ofDiagnosticProblem-SolvingStrategiesinCarMechatronics....... 461
StephanAbeleandMatthiasvonDavier
Contents ix
23 ApplyingtheGeneralDiagnosticModeltoProficiencyData
fromaNationalSkillsSurvey............................................. 489
XueliXuandMatthiasvonDavier
24 ReducedReparameterizedUnifiedModelAppliedtoLearning
SpatialRotationSkills ..................................................... 503
SusuZhang,JeffDouglas,ShiyuWang,
andStevenAndrewCulpepper
25 HowtoConductaStudywithDiagnosticModels....................... 525
Young-SunLeeandDiegoA.Luna-Bazaldua
PartIV Software,Data,andTools
26 TheRPackageCDMforDiagnosticModeling.......................... 549
AlexanderRobitzschandAnnCathriceGeorge
27 DiagnosticClassificationModelingwithflexMIRT..................... 573
LiCaiandCarrieR.Houts
28 UsingMplustoEstimatetheLog-LinearCognitive
DiagnosisModel ............................................................ 581
MeghanFager,JessePace,andJonathanL.Templin
29 CognitiveDiagnosisModelingUsingtheGDINARPackage.......... 593
WenchaoMa
30 GDMSoftwaremdltmIncludingParallelEMAlgorithm.............. 603
LaleKhorramdel,HyoJeongShin,andMatthiasvonDavier
31 EstimatingCDMsUsingMCMC ......................................... 629
XiangLiuandMatthewS.Johnson
Index............................................................................... 647