ebook img

Handbook of Complex Variables PDF

300 Pages·1999·13.295 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of Complex Variables

Handbook of Complex Variables Steven G. Krantz Handbook of Complex Variables With 102 Figures Springer Science+Business Media, LLC Steven G. Krantz Department of Mathematics Washington University in St. Louis St. Louis, MO 63130 USA Library of Congress Cataloging.in·Publication Data Krantz, Steven G. (Steven George), 1951- Handbook of complex variab1es / Steven G. Krantz. p. cm. Includes bib1iographica1 references and index. ISBN 978-1-4612-7206-9 ISBN 978-1-4612-1588-2 (eBook) DOI 10.1007/978-1-4612-1588-2 1. Functions of complex variab1es. 2. Mathematical analysis. 1. Title. QA331.7.K744 1999 515'.9-dc21 99.20156 CIP AMS Subject C1assifications: 30-00, 32-00, 33-00 Printed on acid-free paper. O» © 1999 Springer Science+Business Media New York ® ao» Originally published by Birkhăuser Boston in 1999 Softcover reprint of the hardcover 1s t edition 1999 AII rights reserved. This work may not be translated or copied in whole or in part without the written permission ofthe publisher (Springer Science+Business Media, LLC ), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. ISBN 978-1-4612-7206-9 SPIN 19954551 J.t.'IEX. Typeset by the author in 987654321 To the memory ofLars Valerian Ahlfors, 1907-1996. Contents Preface xix List ofFigures xxi 1 The Complex Plane 1 1.1 Complex Arithmetic . . . . . . . 1 1.1.1 The Real Numbers. . . 1 1.1.2 The Complex Numbers 1 1.1.3 Complex Conjugate . . 2 1.1.4 Modulus ofa Complex Number 2 1.1.5 The Topology ofthe Complex Plane. 3 1.1.6 The Complex Numbers as a Field . . 6 1.1.7 TheFundamental Theorem ofAlgebra. 7 1.2 The Exponential and Applications . . . . . . . 7 1.2.1 The Exponential Function 7 1.2.2 The Exponential Using Power Series. 8 1.2.3 Laws ofExponentiation . . . . . . 8 1.2.4 Polar Form ofa Complex Number . . 8 1.2.5 Roots ofComplex Numbers. . . . . . 10 1.2.6 The Argument ofa Complex Number 11 1.2.7 Fundamental Inequalities . . . . . . . 12 1.3 Holomorphic Functions. . . . . . . . . . . . . . 12 1.3.1 Continuously Differentiable and Ck Functions 12 1.3.2 The Cauchy-Riemann Equations. . 13 1.3.3 Derivatives.. . . . . . . . . . . . . 13 1.3.4 Definition ofHolomorphic Function 14 1.3.5 The Complex Derivative 15 vzz viii Contents 1.3.6 Alternative Terminology for Holomorphic Functions . . . 16 1.4 The Relationship ofHolomorphic and Harmonic Functions . . . . . . . . . . 16 1.4.1 Harmonic Functions. . . . . 16 1.4.2 Holomorphic and Harmonic Functions . 17 2 Complex Line Integrals 19 2.1 Real and Complex Line Integrals 19 2.1.1 Curves....... . . 19 2.1.2 Closed Curves . . . . . 19 2.1.3 Differentiable and Ck Curves . 21 2.1.4 Integrals on Curves . . . . . . 21 2.1.5 The Fundamental Theorem ofCalculus along Curves . . . . . . . . 22 2.1.6 The Complex Line Integral . . . . 22 2.1.7 Properties oflntegrals . . . . . . . 22 2.2 Complex Differentiability and Conformality 23 2.2.1 Limits..... . . . . . . 23 2.2.2 Continuity............. 24 2.2.3 The Complex Derivative ..... 24 2.2.4 Holomorphicity and the Complex Derivative 24 2.2.5 Conformality . . . . . . . . . . . . 25 2.3 The Cauchy Integral Theorem and Formula . . . . . 26 2.3.1 The Cauchy Integral Formula. . . . . . . . 26 2.3.2 The Cauchy Integral Theorem, Basic Form 26 2.3.3 More General Forms ofthe Cauchy Theorems 26 2.3.4 Deformability ofCurves . . . . . 28 2.4 A Codaon the Limitations ofthe Cauchy Integral Formula . . . . . . . . . . 28 3 Applications ofthe Cauchy Theory 31 3.1 The Derivatives ofa Holomorphic Function 31 3.1.1 A Formula for the Derivative . . . 31 3.1.2 The Cauchy Estimates 31 3.1.3 Entire Functions and Liouville's Theorem. 31 3.1.4 The Fundamental Theorem ofAlgebra. . 32 3.1.5 Sequences ofHolomorphic Functions and their Derivatives . . . . . . . . . . . . 33 3.1.6 The Power Series Representation ofa Holomorphic Function . . . . . . . 34 3.1.7 TableofElementary Power Series . . 35 3.2 The Zeros ofa Holomorphic Function ..... 36 3.2.1 The Zero Set ofa Holomorphic Function 36 Contents ix 3.2.2 Discrete Sets and Zero Sets . . . . . . 37 3.2.3 Uniqueness ofAnalytic Continuation 38 4 Isolated Singularities and Laurent Series 41 4.1 The Behavior ofa Holomorphic Function near an Isolated Singularity. . . . . . . . . . . . 41 4.1.1 Isolated Singularities ..... 41 4.1.2 A Holomorphic Function on a Punctured Domain . 41 4.1.3 Classification ofSingularities . 41 4.1.4 Removable Singularities, Poles, and Essential Singularities . . 42 4.1.5 The Riemann Removable Singularities Theorem . . . . . . . . 42 4.1.6 The Casorati-Weierstrass Theorem. 43 4.2 Expansion around Singular Points . 43 4.2.1 Laurent Series . 43 4.2.2 Convergence ofa Doubly Infinite Series 43 4.2.3 Annulus ofConvergence. . . . . . . . . 44 4.2.4 Uniqueness ofthe Laurent Expansion . 44 4.2.5 The Cauchy Integral Formulafor an Annulus . 45 4.2.6 Existence ofLaurent Expansions ... 45 4.2.7 Holomorphic Functions with Isolated Singularities .. . . . . . . . . . . . . 45 4.2.8 Classification ofSingularities in Terms of Laurent Series . . . . . . . . 46 4.3 Examples ofLaurent Expansions . . . . . . . . . . 46 4.3.1 Principal Part ofa Function . 46 4.3.2 Algorithm for Calculating the Coefficients ofthe Laurent Expansion. . . . . . . . . . . 48 4.4 The Calculus ofResidues . 48 4.4.1 Functions with Multiple Singularities 48 4.4.2 The Residue Theorem . . . . . . . . . 48 4.4.3 Residues........... . . . . . 49 4.4.4 The Index or Winding Number ofa Curve about a Point . 49 4.4.5 Restatement ofthe Residue Theorem . . . 50 4.4.6 Method for Calculating Residues . . . . . . 50 4.4.7 Summary Charts ofLaurent Series and Residues 51 4.5 Applications to the Calculation ofDefinite Integrals and Sums . 51 4.5.1 The Evaluation ofDefinite Integrals 51 4.5.2 A Basic Example . 52 4.5.3 Complexification ofthe Integrand . 54 x Contents 4.5.4 An Example with a More Subtle Choice ofContour . 56 4.5.5 Making the Spurious Part ofthe Integral Disappear . . . . . . . . 58 4.5.6 The Use ofthe Logarithm. . . . . 60 4.5.7 Summing a Series Using Residues 62 4.5.8 Summary Chart ofSome Integration Techniques . 63 4.6 Meromorphic Functions and Singularities at Infinity . 63 4.6.1 Meromorphic Functions . 63 4.6.2 Discrete Sets and Isolated Points. 63 4.6.3 Definition ofMeromorphic Function 64 4.6.4 Examples ofMeromorphic Functions. 64 4.6.5 Meromorphic Functions with Infinitely Many Poles . 66 4.6.6 Singularities at Infinity . . . . . . . 66 4.6.7 The Laurent Expansion at Infinity . 67 4.6.8 Meromorphic at Infinity. . . . 67 4.6.9 Meromorphic Functions in the Extended Plane . . . . . . . . 67 5 The Argument Principle 69 5.1 Counting Zeros and Poles . . . . . . . . 69 5.1.1 Local Geometric Behavior ofa Holomorphic Function . . . . . 69 5.1.2 Locating the Zerosofa Holomorphic Function 69 5.1.3 ZeroofOrder n . . . . . . . . . . . . . . . . . 70 5.1.4 Counting the Zeros ofa Holomorphic Function 70 5.1.5 The Argument Principle .. 71 5.1.6 Location ofPoles 72 5.1.7 The Argument Principle for Meromorphic Functions 72 5.2 The Local Geometry ofHolomorphic Functions 73 5.2.1 The Open Mapping Theorem 73 5.3 Further Results on the Zeros ofHolomorphic Functions 74 5.3.1 RoucM's Theorem 74 5.3.2 Typical Application ofRoucM's Theorem 74 5.3.3 RoucM's Theorem and the Fundamental Theorem ofAlgebra 75 5.3.4 Hurwitz's Theorem 76 5.4 The Maximum Principle . . . . . . . . . . . 76 5.4.1 The Maximum Modulus Principle 76 5.4.2 Boundary Maximum Modulus Theorem 76 Contents xi 5.4.3 The Minimum Principle 77 5.4.4 The Maximum Principle on an Unbounded Domain 77 5.5 The Schwarz Lemma . . . . . . . . . 77 5.5.1 Schwarz's Lemma ..... 78 5.5.2 The Schwarz-Pick Lemma 78 6 The Geometric Theory ofHolomorphic Functions 79 6.1 The Idea ofa Conformal Mapping 79 6.1.1 Conformal Mappings 79 6.1.2 Conformal Self-Maps ofthe Plane 79 6.2 Conformal Mappings ofthe Unit Disc .. 80 6.2.1 Conformal Self-Maps ofthe Disc 80 6.2.2 Mobius Transformations. 81 6.2.3 Self-Maps ofthe Disc . . . . 81 6.3 Linear Fractional Transformations .. 81 6.3.1 Linear Fractional Mappings. 81 6.3.2 The Topology ofthe Extended Plane 83 6.3.3 The Riemann Sphere .. . . . . . . . 83 6.3.4 Conformal Self-Maps ofthe Riemann Sphere 84 6.3.5 The Cayley Transform. . . . . . 85 6.3.6 Generalized Circles and Lines. . 85 6.3.7 The Cayley Transform Revisited 85 6.3.8 Summary Chart ofLinear Fractional Transformations . . . 85 6.4 The Riemann Mapping Theorem . . . . . 86 6.4.1 The Concept ofHomeomorphism. 86 6.4.2 The Riemann Mapping Theorem . 86 6.4.3 The Riemann Mapping Theorem: Second Formulation . . . . . . . . 87 6.5 Conformal Mappings ofAnnuli . . . . . . . 87 6.5.1 A Riemann Mapping Theorem for Annuli . 87 6.5.2 Conformal Equivalence ofAnnuli. 87 6.5.3 Classification ofPlanar Domains . . . . . . 88 7 Harmonic Functions 89 7.1 Basic Properties ofHarmonic Functions 89 7.1.1 The Laplace Equation. . . . . 89 7.1.2 Definition ofHarmonic Function 89 7.1.3 Real- and Complex-Valued Harmonic Functions . . . . . . . 89 7.1.4 Harmonic Functions as the Real Parts of Holomorphic Functions . . . . . . . 90 7.1.5 Smoothness ofHarmonic Functions ... 90 xii Contents 7.2 The Maximum Principle and the Mean Value Property . 91 7.2.1 The Maximum Principle for Harmonic Functions . . . . . 91 7.2.2 The Minimum Principle for Harmonic Functions . . . . . 91 7.2.3 The Boundary Maximum and Minimum Principles . . . . . . 91 7.2.4 The Mean Value Property .. 92 7.2.5 Boundary Uniqueness for Harmonic Functions 92 7.3 The Poisson Integral Formula . 92 7.3.1 The Poisson Integral .. 92 7.3.2 The Poisson Kernel .. 93 7.3.3 The Dirichlet Problem. 93 7.3.4 The Solution ofthe Dirichlet Problem on the Disc . 93 7.3.5 The Dirichlet Problem on a General Disc 94 7.4 Regularity ofHarmonic Functions. . . . . . . . . . 94 7.4.1 The Mean Value Property on Circles .. 94 7.4.2 The Limit ofa SequenceofHarmonic Functions 95 7.5 The Schwarz Reflection Principle . . . . . . 95 7.5.1 Reflection ofHarmonic Functions 95 7.5.2 Schwarz Reflection Principle for Harmonic Functions . . . . . . . . 95 7.5.3 The Schwarz Reflection Principle for Holomorphic Functions . . . . . . . . 96 7.5.4 More General Versions ofthe Schwarz Reflection Principle . . . 96 7.6 Harnack's Principle . . . . . . . . . 97 7.6.1 The Harnack Inequality. 97 7.6.2 Harnack's Principle . . . 97 7.7 The Dirichlet Problem and Subharmonic Functions . 97 7.7.1 The Dirichlet Problem . 97 7.7.2 Conditions for Solving the Dirichlet Problem 98 7.7.3 Motivation for Subharmonic Functions 98 7.7.4 Definition ofSubharmonic Function 99 7.7.5 Other Characterizations of Subharmonic Functions . 99 7.7.6 The Maximum Principle . 100 7.7.7 Lack ofA Minimum Principle 100 7.7.8 Basic Properties ofSubharmonic Functions 100 7.7.9 The Concept ofa Barrier . 100 7.8 The General Solution ofthe Dirichlet Problem ... 101

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.