ebook img

Handbook of Artificial Intelligence in Healthcare: Vol 2: Practicalities and Prospects (Intelligent Systems Reference Library, 212) PDF

429 Pages·2021·9.883 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of Artificial Intelligence in Healthcare: Vol 2: Practicalities and Prospects (Intelligent Systems Reference Library, 212)

Intelligent Systems Reference Library 212 Chee-Peng Lim · Yen-Wei Chen · Ashlesha Vaidya · Charu Mahorkar · Lakhmi C. Jain   Editors Handbook of Artificial Intelligence in Healthcare Vol 2: Practicalities and Prospects Intelligent Systems Reference Library Volume 212 SeriesEditors JanuszKacprzyk,PolishAcademyofSciences,Warsaw,Poland LakhmiC.Jain,KESInternational,Shoreham-by-Sea,UK The aim of this series is to publish a Reference Library, including novel advances and developments in all aspects of Intelligent Systems in an easily accessible and wellstructuredform.Theseriesincludesreferenceworks,handbooks,compendia, textbooks,well-structuredmonographs,dictionaries,andencyclopedias.Itcontains wellintegratedknowledgeandcurrentinformationinthefieldofIntelligentSystems. Theseriescoversthetheory,applications,anddesignmethodsofIntelligentSystems. Virtuallyalldisciplinessuchasengineering,computerscience,avionics,business, e-commerce,environment,healthcare,physicsandlifescienceareincluded.Thelist oftopicsspansalltheareasofmodernintelligentsystemssuchas:Ambientintelli- gence,Computationalintelligence,Socialintelligence,Computationalneuroscience, Artificiallife,Virtualsociety,Cognitivesystems,DNAandimmunity-basedsystems, e-Learningandteaching,Human-centredcomputingandMachineethics,Intelligent control,Intelligentdataanalysis,Knowledge-basedparadigms,Knowledgemanage- ment, Intelligent agents, Intelligent decision making, Intelligent network security, Interactive entertainment, Learning paradigms, Recommender systems, Robotics and Mechatronics including human-machine teaming, Self-organizing and adap- tive systems, Soft computing including Neural systems, Fuzzy systems, Evolu- tionarycomputingandtheFusionoftheseparadigms,PerceptionandVision,Web intelligenceandMultimedia. IndexedbySCOPUS,DBLP,zbMATH,SCImago. AllbookspublishedintheseriesaresubmittedforconsiderationinWebofScience. Moreinformationaboutthisseriesathttps://link.springer.com/bookseries/8578 · · · Chee-Peng Lim Yen-Wei Chen Ashlesha Vaidya · Charu Mahorkar Lakhmi C. Jain Editors Handbook of Artificial Intelligence in Healthcare Vol 2: Practicalities and Prospects Editors Chee-PengLim Yen-WeiChen InstituteforIntelligentSystemsResearch CollegeofInformationScience andInnovation andEngineering DeakinUniversity RitsumeikanUniversity WaurnPonds,VIC,Australia Shiga,Japan AshleshaVaidya CharuMahorkar RoyalAdelaideHospital AvantiInstituteofCardiology Adelaide,SA,Australia Nagpur,India LakhmiC.Jain KESInternational Shoreham-by-Sea,UK ISSN1868-4394 ISSN1868-4408 (electronic) IntelligentSystemsReferenceLibrary ISBN978-3-030-83619-1 ISBN978-3-030-83620-7 (eBook) https://doi.org/10.1007/978-3-030-83620-7 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface ThisvolumeisasequelofHandbookofArtificialIntelligenceinHealthcare.Thefirst volumefocusesonadvancesandapplicationsofartificialintelligence(AI)method- ologiesinseveralspecificareas,i.e.signal,imageandvideoprocessingaswellas informationanddataanalytics.Inthisvolume,severalgeneralpracticalitychallenges and future prospects of AI methodologies pertaining to the healthcare and related domainsarepresentedinPartIandPartII,respectively.Atotalof17chaptersare includedinthisvolume.Adescriptionofeachcontributionisasfollows. Decision-makingandcontrolinhealthcareenvironmentsareessentialactivities. AI-based tools are useful for informed decision-making by both physicians and patients.Albuetal.presentseveralintelligentparadigms,particularlyartificialneural networksandfuzzylogic,formodelling,prediction,diagnosisandcontrolinhealth- care applications. These intelligent tools are able to assist in decision-making and controlprocessesforprevention,earlydetectionandpersonalizedhealthcare. Tribertietal.aimtotacklethe“human”challengepertainingtoAIinhealthcare practice,focusingonthepotentialriskinthedoctor–patientrelationship.Notingthat thereisstilllimitedknowledgeontheusageofAIinhealthandmedicine,theystudy the guidelines for identifying people who work with AI in the healthcare context. Theyarguethatitisimportanttoformaninterdisciplinaryteamwithmemberswho areabletovaluebothrigorouspracticeandhealthandwell-beingofpatients. Belciug acknowledges the cross-fertilization of statistical analysis and AI for devisingnewandimpactfulmethodstoassistinmedicalpracticeanddiscovery.It isnecessarytoexploitstatisticalanalysisforvalidatingAI-basedmethodologiesin healthcare,inordertoimprovereliabilityandcredibilityofthefindings.Inaddition, usefulplan,designandimplementationofstatisticalanalysiswithrespecttoAIin healthcareresearcharediscussed. Pedelletal.examinethebenefitsofintroducinghumanoidrobotsintodifferent activeageingandagedcaresettings.Itisfoundthatimplementationandinteraction with robots require a well-designed plan, in order to develop trust and interest for creating a shift in feelings of control pertaining to older adults as well as staff. In a group setting, older adults can engage and enjoy the interaction with both the robot and the wider group with positive effects. Successful interactions between v vi Preface older adults and humanoid robots also need to be supported by motivational goal modellingandtechnologyprobetechniques. To combat cancer, which is a leading cause of mortality worldwide, physical activity (PA) plays a significant role in reducing the risk of developing cancer. Dadhania and Williams investigate the use of digital wearable tools in offering advantagesincludingscale,costanddatacapture.Specifically,currentmethodsof evaluatingPAincancerpatientsandhowwearableaccelerometersareusedincancer clinical trials are studied. The successes and challenges associated with collecting PAdatawithwearableaccelerometersindigitalhealthcaretrialsarediscussed. Stankova et al. develop an online application of a home-administered parent- mediated program for children with Autism spectrum disorder for enhancement of their communication skills. The program is organized in modules, each with differenttextandvisualcards,targetingimpressive/expressivelanguage,discourse abilitiesandotherfunctions.Theinstructionalcomponentforparentsinvolvesactiv- itieswithintheModdlee-educationalplatform.Theadministrationfortheprogram followsastrictschedule,whichisalsoavailableinMoodle. Toovercomethe“black-box”issue,Gerlingsetal.focustheirresearchonexplain- able AI models. Different explanation needs with respect to stakeholders in the caseofclassifyingCOVID-19patientsarestudied.Theneedforaconstellationof stakeholders involved in human-AI collaborative decision-making is highlighted. ThestudyprovidesinsightsintohowAI-basedsystemscanbeadjustedtosupport differentneedsfromstakeholders,inordertofacilitatebetterimplementationinthe healthcarecontext. Restausesaneuralnetworkmodel,i.e.theself-organizingmap(SOM),toiden- tify the emergence of COVID-19 clusters among different regions in Italy, in an attempttoexplaindifferentcharacteristicsofthepandemicwithinthesamecountry. Demographic,healthcareandpoliticaldataattheregionallevelareconsidered,and theinteractionsamongthemareexamined.ByleveragingcapabilitiesoftheSOM model,therelationsamongvariablescanbevisualized,andanearlywarningsystem canbedevelopedtoaddressfurtherinterventioninthebattleagainsttheCOVID-19 pandemic. CasacubertaandVallverdúindicatethatuniversalemotionleadstoaconceptual biasintheuseofAIinmedicalscenarios.Indeed,emotionalresponsesinmedical practicesaremediatedculturally.Asaresult,amulticulturalapproachisrequiredin themedicalcontext,takingspecialconsiderationofemotionalvariationswithrespect todifferentculturalbackgroundofpatients.Fromthecomputationalperspective,the mostcommonbiasesthatcanoriginatefromdatatreatmentutilizingmachinelearning algorithmsarediscussed. TheRussianHocGrouponApplicationofAITechnologiesinHealthInformatics (AHG2TC215ISO)highlightstheimportanceofdesigninganddeployingAI-based systemsinaccordancewithestablishedguidelinesandlegislationformedicalappli- cations.Inthisrespect,theformationofunifiedapproaches,definitionsandrequire- ments for AI in medicine can significantly increase efficiency of the associated developmentandapplication.Aconsistentapproachthroughglobalstandardization can reduce the burden of stakeholders when establishing regulatory frameworks. Preface vii InitiativestodefinegoalsanddirectionsforstandardizationpertainingtoAIinthe healthcareareasarediscussed. Gusevetal.discussAIresearchanddevelopmentinRussia,wheregovernment andexpertcommunityareworkingtogether todevelop legalandtechnicalregula- tions.AI-basedsoftwareproductsfordiagnosticandtreatmentprocesses,including clinicaltrials,areregulatedcomprehensively.Abalancebetweenacceleratingtime to market of AI products and ensuring their safety and efficacy is required along withappropriateconsiderationonthepotentialrisksandproblems.Thefirstseries of Russian national technical standards to accelerate AI product development and instiltrustinmedicalpractitionersarebeingestablished. Kolpashchikov et al. address issues and challenges on the use of robotic tech- nologiesinhealthcare.Inadditiontosurgicalandrehabilitationrobots,non-medical robots that are useful for healthcare organizations to reduce costs, prevent disease transmissionandmitigatethelackofworkforcearereviewed.Onecriticalissuethat preventsfuturedevelopmentofroboticinhealthcareislackofautonomy,whichis most challenging in minimally invasive surgery where flexible robots are used in confined spaces. Innovative solutions for producing flexible robots as well as new roboticdesignswithappropriateactuatorsandsensorsarerequired. Belandi et al. conduct a review on the development of Internet of things (IoT) andmachinelearningforsmarthealthcaresystems.Utilizingsmarthealthcaretech- nologiesencompassingIoTandmachinelearningdevicesformonitoringhomeenvi- ronmentsisbecomingpopular,particularlyforelderlypatientswithlong-termnon- acute diseases who do not require hospitalization. The survey focus is placed on twoaspects,namelyarchitecturesandalgorithms,oftheavailable technologies.A taxonomyforclassificationofthereviewedmodelsandsystemsisprovided. Hoppeetal.highlightthelackofstudiesonthepotentialofdigitalbusinessmodels inthehealthcaresector.Keyperformanceindicators(KPIs),individualization,effi- ciencyandcommunicationchannelsareidentifiedasthemainfactors.Anevaluation withastructuralequationmodellingprocessindicatesthatKPIsandcommunication channelshaveasignificantinfluenceonthepotentialofdigitalbusinessmodelsand theirprocessesinhealthcare.Anoutlookonthebenefitsandchallengespertaining totherapiddevelopmentofAIinthehealthcaresectorispresented. Manresa-Yee et al. explore the transparency and interpretability issues of AI, particularlydeepneuralnetworkmodels.ThroughexplainableAI,usersareableto understand the predictions and decisions from AI-based systems, increasing trust- fulnessandreliabilityofthesystems.Anoverviewonexplanationinterfacesinthe healthcarecontextisdiscussed.Asurveyonhealthcarerelatedtostudiesonexpla- nationsintheformofnaturaltext,parameterinfluence,visualizationofdatagraphs orsaliencymapsispresented. Giarelisetal.introduceagraph-basedtextrepresentationmethodfordiscoveryof futureresearchcollaborationinthemedicalfield.Themethodcombinesgraph-based feature selection and text categorization for formulation of a novel representation of multiple scientific documents. The proposed method is able to provide useful predictionsonfutureresearchcollaborations,asdemonstratedthroughtheuseofthe COVID-19OpenResearchDataSet. viii Preface Shopon et al. investigate information security by combining privacy concepts and biometric technologies. An analysis on the protection of physiological and socialbehaviouralbiometricdatathroughavarietyofauthenticationapplicationsis given.Currentandemergingresearchstudiesinthemulti-modalbiometricdomain, including the use of deep learning-based methods, are explained. Open questions and future directions in this research field are discussed, offering new methods in biometricsecurityandprivacyinvestigationandprovidinginsightsintotheemerging topicsofbigdataanalyticsandsocialnetworkresearch. The editors are grateful to all authors and reviewers for their contributions. We wouldalsoliketothanktheeditorialteamofSpringerfortheirsupportthroughoutthe compilationofbothvolumesofthishandbook.Wesincerelyhopethattheresearch and practical studies covered in both volumes can help instil new ideas and plans for researchers and practitioners to work together, as well as to further advance researchandapplicationofAIandrelatedmethodologiesforthebenefitsofhealth andwell-beingofhumans. WaurnPonds,Australia Chee-PengLim Shiga,Japan Yen-WeiChen Adelaide,Australia AshleshaVaidya Nagpur,India CharuMahorkar Shoreham-by-Sea,UK LakhmiC.Jain May2021 Contents PartI PracticalitiesofAIMethodologiesinHealthcare 1 IntelligentParadigmsforDiagnosis,PredictionandControl inHealthcareApplications ..................................... 3 AdrianaAlbu,Radu-EmilPrecup,andTeodor-AdrianTeban 1.1 Introduction ............................................. 4 1.2 RelevantReferences ...................................... 9 1.3 Medical Decision-Making Based on Artificial Neural Networks ............................................... 12 1.3.1 SkinDiseasesDiagnosis ........................... 12 1.3.2 HepatitisCPredictions ............................ 14 1.3.3 CoronaryHeartDiseasePrediction .................. 16 1.4 MedicalImageAnalysisUsingArtificialNeuralNetworks ..... 18 1.5 Artificial Neural Networks Versus Naïve Bayesian Classifier ................................................ 21 1.5.1 HepatitisBPredictions ............................ 22 1.5.2 StrokeRiskPrediction ............................. 25 1.6 ProstheticHandMyoelectric-BasedModelingandControl UsingEvolvingFuzzyModelsandFuzzyControl ............. 27 1.6.1 EvolvingFuzzyModelingResults ................... 28 1.6.2 FuzzyControlResults ............................. 32 1.7 Conclusions ............................................. 35 References .................................................... 35 2 ArtificialIntelligenceinHealthcarePractice:HowtoTackle the“Human”Challenge ....................................... 43 StefanoTriberti,IlariaDurosini,DavideLaTorre,ValeriaSebri, LucreziaSavioni,andGabriellaPravettoni 2.1 Introduction ............................................. 44 2.2 AIinHealthcare ......................................... 46 2.3 A“thirdWheel”Effect .................................... 48 2.3.1 “ConfusionoftheTongues” ........................ 50 2.3.2 DecisionParalysisandRiskofDelay ................ 51 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.