ebook img

Handbook of Ambient Intelligence and Smart Environments PDF

1292 Pages·2010·57.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of Ambient Intelligence and Smart Environments

Handbook of Ambient Intelligence and Smart Environments · · Hideyuki Nakashima Hamid Aghajan Juan Carlos Augusto Editors Handbook of Ambient Intelligence and Smart Environments 123 Editors HideyukiNakashima HamidAghajan FutureUniversityHakodate DepartmentofElectricalEngineering Kameda-Nakano116-2 StanfordUniversity Hakodate,Hokkaido 350SerraMall 041-8655Japan Stanford,CA94305-9515 [email protected] USA [email protected] JuanCarlosAugusto SchoolofComputing&Mathematics UniversityofUlsteratJordanstown ShoreRoad,Newtownabbey,Co.Antrim UKBT370QB [email protected] ISBN978-0-387-93807-3 e-ISBN978-0-387-93808-0 DOI10.1007/978-0-387-93808-0 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2009935679 (cid:2)c SpringerScience+BusinessMedia,LLC2010 Chapter11(cid:2)c2009FrankStajano.Usedwithpermission Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA),except for brief excerpts in connection with reviews orscholarly analysis. Usein connection with any form of information storage and retrieval, electronic adaptation, computer software,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not theyaresubjecttoproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents PartI Introduction AmbientIntelligenceandSmartEnvironments:AStateoftheArt ..... 3 JuanCarlosAugusto,HideyukiNakashima,HamidAghajan 1 Introduction............................................. 3 2 Sensors,Vision,andNetworks ............................. 7 3 MobileandPervasiveComputing........................... 10 4 Human-centeredInterfaces ................................ 14 5 ArtificialIntelligenceandRobotics ......................... 17 6 Multi-Agents............................................ 20 7 Applications ............................................ 22 8 SocietalImplicationsandImpact ........................... 24 9 SelectedResearchProjects ................................ 26 10 PerspectivesoftheArea................................... 29 11 Conclusions............................................. 30 References.................................................... 31 PartII Sensor,VisionandNetworks ASurveyofDistributedComputerVisionAlgorithms................ 35 RichardJ.Radke 1 Introduction............................................. 35 2 DistributedAlgorithms.................................... 37 3 TopologyEstimation ..................................... 38 3.1 Non-overlappingTopologyEstimation............... 40 3.2 OverlappingTopologyEstimation................... 41 4 CameraNetworkCalibration............................... 42 4.1 Non-overlappingCameraCalibration................ 43 v vi Contents 4.2 OverlappingCameraCalibration.................... 44 4.3 ImprovingCalibrationConsistency.................. 45 5 TrackingandClassification ................................ 47 6 Conclusions............................................. 49 References.................................................... 50 Video-BasedPeopleTracking .................................... 57 MarcusA.Brubaker,LeonidSigalandDavidJ.Fleet 1 Introduction............................................. 57 1.1 TrackingasInference ............................. 58 2 GenerativeModelforHumanPose.......................... 60 2.1 KinematicParameterization........................ 60 2.2 BodyGeometry.................................. 61 2.3 ImageFormation................................. 62 3 ImageMeasurements ..................................... 62 3.1 2DPoints ....................................... 63 3.2 BackgroundSubtraction........................... 64 3.3 AppearanceModels............................... 65 3.4 EdgesandGradientBasedFeatures ................. 66 3.5 Discussion ...................................... 68 4 MotionModels .......................................... 68 4.1 JointLimits ..................................... 69 4.2 SmoothnessandLinearDynamicalModels........... 69 4.3 ActivitySpecificModels .......................... 70 4.4 Physics-basedMotionModels...................... 72 5 Inference ............................................... 73 5.1 ParticleFilter .................................... 74 5.2 AnnealedParticleFilter ........................... 75 5.3 MarkovChainMonteCarloFiltering ................ 78 6 InitializationandFailureRecovery.......................... 79 6.1 Introductionto DiscriminativeMethodsfor Pose Estimation ...................................... 80 6.2 DiscriminativeMethodsasProposalsforInference .... 82 7 Conclusions............................................. 82 References.................................................... 83 LocomotionActivitiesinSmartEnvironments ...................... 89 BjörnGottfried 1 Introduction............................................. 89 1.1 WhyLocomotionMatters.......................... 89 1.2 Overview ....................................... 90 2 RelatedWorkonMotionAnalysisandSmartEnvironments..... 90 2.1 MotionParameters ............................... 91 2.2 Precision........................................ 91 2.3 Viewpoint....................................... 92 2.4 Wayfinding...................................... 92 Contents vii 2.5 Modelling....................................... 93 2.6 Summary ....................................... 94 3 LocomotionActivitiesinSmartEnvironments ................ 94 3.1 SmartHospitals.................................. 94 3.2 ScenariosinaSmartHospital ...................... 96 3.3 CharacterisingLocomotionActivities................ 98 4 TheRepresentationofLocomotionActivities................. 101 4.1 SpatiotemporalInformation........................ 101 4.2 FunctionalSpecification........................... 102 4.3 AllocentricView ................................. 104 5 LocomotionBasedAlgorithms ............................. 104 5.1 PlanningScenario ................................ 105 5.2 WayfindingScenario.............................. 106 5.3 SearchingScenario ............................... 106 5.4 MonitoringScenario.............................. 108 6 Discussion .............................................. 109 7 Outlook ................................................ 110 8 Summary ............................................... 111 References.................................................... 112 TrackinginUrbanEnvironmentsUsing SensorNetworksBasedon Audio-VideoFusion ............................................ 117 ManishKushwaha,SonghwaiOh,IsaacAmundson,XenofonKoutsoukos, AkosLedeczi 1 Introduction............................................. 117 2 ChallengesandRelatedWork .............................. 119 3 Architecture............................................. 121 4 AudioBeamforming...................................... 123 5 VideoTracking .......................................... 125 6 TimeSynchronization .................................... 128 6.1 SynchronizationMethodology...................... 128 6.2 EvaluationofHSNTimeSynchronization ............ 129 6.3 SynchronizationService........................... 130 7 MultimodalTargetTracking ............................... 131 7.1 SequentialBayesianEstimation..................... 132 7.2 SensorModels................................... 134 7.3 Multiple-TargetTracking .......................... 136 8 Evaluation .............................................. 137 8.1 SequentialBayesianEstimation..................... 137 8.2 MCMCDA ...................................... 141 9 Conclusions............................................. 144 References.................................................... 145 viii Contents Multi-CameraVisionforSurveillance ............................. 149 NorikoTakemuraandHiroshiIshiguro 1 Introduction............................................. 149 2 CameraSystems ......................................... 150 2.1 FixedCamera.................................... 150 2.2 ActiveCamera................................... 152 2.3 MixedSystem ................................... 152 2.4 Multi-modalSystem .............................. 154 2.5 SurveillanceIssues ............................... 154 2.6 LocationandSubjects............................. 156 2.7 Occlusion....................................... 156 3 CaseStudies ............................................ 157 3.1 Real-timecooperativemulti-targettrackingbydense communicationamongActiveVisionAgents ......... 157 3.2 TrackingMultipleOccludingPeoplebyLocalizingon MultipleScenePlanes............................. 158 3.3 ApplyingaFormofMemory-basedAttentionControl toActivityRecognitionataSubwayStation .......... 160 3.4 DMCtrac:DistributedMultiCameraTracking........ 161 3.5 Abnormal behavior-detection using sequential syntacticalclassification in a networkofclustered cameras......................................... 163 4 IndustrySystems......................................... 163 5 Conclusion.............................................. 164 6 FurtherReading ......................................... 165 References.................................................... 165 PartIII MobileandPervasiveComputing CollaborationSupportforMobileUsersinUbiquitousEnvironments... 173 BabakA.FarshchianandMonicaDivitini 1 Introduction............................................. 173 2 CharacteristicsofCollaboration ............................ 174 2.1 CollaborationandSharedContext................... 174 2.2 EmbodiedInteractionsandArtifactsasResources ..... 177 2.3 MobilityofPeopleandResources................... 178 2.4 PhysicalDistributionofPeople ..................... 178 2.5 FlexibilityandtheNeedforTailoring................ 179 3 ExistingTechnologyinSupportofUbiquitousCollaboration.... 180 4 HumanGridasaUnifyingConceptforAmIandCSCW........ 181 4.1 TheExampleofUbiBuddy......................... 183 4.2 SharedContextinHumanGrid ..................... 186 4.3 EmbodimentinHumanGrid ....................... 186 4.4 MobilityinHumanGrid........................... 187 4.5 SupportforPhysicalDistributioninHumanGrid ...... 187 Contents ix 4.6 FlexibilityandTailoringinaHumanGrid ............ 187 5 ImplementationofHumanGrid:TheUbiCollabPlatform....... 188 5.1 UbiNodeOverallArchitecture...................... 189 5.2 CollaborationInstanceManager .................... 190 5.3 SessionManager ................................. 192 5.4 CollaborationSpaceManager ...................... 192 5.5 ServiceDomainManager.......................... 193 5.6 ResourceDiscoveryManager ...................... 193 5.7 IdentityManager................................. 194 6 Conclusions............................................. 195 7 Acknowledgements ...................................... 196 References.................................................... 196 PervasiveComputingMiddleware ................................ 201 GregorSchiele,MarcusHandteandChristianBecker 1 Introduction............................................. 201 2 DesignConsiderations .................................... 202 2.1 OrganizationalModel............................. 202 2.2 ProvidedLevelofAbstraction...................... 204 2.3 SupportedTasks ................................. 205 3 SpontaneousInteraction................................... 206 3.1 UbiquitousCommunicationandInteraction........... 207 3.2 IntegrationofHeterogeneousDevices ............... 210 3.3 DynamicMediation............................... 211 4 ContextManagement..................................... 214 4.1 AcquisitionandFusion............................ 216 4.2 ModelingandDistribution ......................... 217 4.3 ProvisioningandAccess........................... 218 5 ApplicationAdaptation ................................... 218 5.1 Inter-ApplicationAdaptation....................... 219 5.2 Intra-ApplicationAdaptation....................... 222 6 Conclusion.............................................. 224 References.................................................... 225 CaseStudy ofMiddleware InfrastructureforAmbient Intelligence Environments ................................................. 229 TatsuoNakajima 1 Introduction............................................. 229 2 HighLevelAbstraction ................................... 232 3 CaseStudies ............................................ 233 3.1 MiddlewareInfrastructureforDistributedAudioand VideoAppliances ................................ 233 3.2 MiddlewareInfrastructuretoHideComplexDetailsin UnderlyingInfrastructures......................... 237 3.3 MiddlewareInfrastructuretoSupportSpontaneous SmartObjectIntegration .......................... 241 x Contents 3.4 MiddlewareInfrastructureforContextAnalysis ....... 245 4 MiddlewareDesignIssuesforAmbientIntelligence ........... 249 4.1 HighLevelAbstractionandMiddlewareDesign....... 249 4.2 Interfacev.s.Protocol............................. 249 4.3 NonFunctionalProperties ......................... 250 4.4 Portability....................................... 251 4.5 HumanFactors................................... 251 5 FutureDirections ........................................ 253 References.................................................... 253 CollaborativeContextRecognitionforMobileDevices ............... 257 PerttiHuuskonen,JaniMäntyjärviandVilleKönönen 1 Introduction............................................. 257 1.1 Humans:Context-awareAnimals ................... 258 2 ContextFromCollaboration ............................... 259 3 MobileContextAwareness ................................ 260 3.1 ContextSources.................................. 260 3.2 ApplicationAreas ................................ 262 3.3 ContextRecognition.............................. 263 3.4 DistributedContextAwareness ..................... 264 4 MakingRationalDecisions ................................ 264 4.1 DistributedDecisionMaking....................... 265 4.2 Voting Protocolsas Distributed Decision Making Strategies ....................................... 265 4.3 VotingasCCRMethod............................ 266 5 CaseStudy:PhysicalActivityRecognition ................... 270 5.1 DataSetandTestSettings ......................... 270 5.2 EmpiricalResults ................................ 272 6 ContextRecognitionPlatform.............................. 273 7 TheWayForward........................................ 274 7.1 EnergySavings .................................. 274 7.2 Risks........................................... 275 7.3 Knowledge-basedCCR?........................... 276 References.................................................... 277 SecurityIssuesinUbiquitousComputing .......................... 281 FrankStajano 1 FundamentalConcepts.................................... 281 1.1 Ubiquitous(Pervasive,Sentient,Ambient...)Computing 282 1.2 Security ........................................ 284 1.3 SecurityIssuesinUbiquitousComputing............. 286 2 ApplicationScenariosandTechnicalSecurityContributions .... 287 2.1 WearableComputing ............................. 288 2.2 LocationPrivacy ................................. 289 2.3 RFID........................................... 292 2.4 AuthenticationandDevicePairing .................. 298

Description:
Ambient Intelligence (AmI) has recently been adopted as a term referring to a multidisciplinary subject which embraces a variety of pre-existing fields of computer science and engineering. Given the diversity of potential applications this relationship naturally extends to other areas of science, su
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.