ebook img

Guided Wave Photonics : Fundamentals and Applications with MATLAB® PDF

786 Pages·2012·19.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Guided Wave Photonics : Fundamentals and Applications with MATLAB®

ELECTRICAL ENGINEERING G W uided ave G W uided ave P P hotonics hotonics Fundamentals and Applications with MATLAB® A comprehensive presentation of the theory and simulation of optical waveguides and wave propagations in a guided environment, Guided Wave Photonics: Fundamentals and Applications with MATLAB® supplies basic and advanced understanding of Fundamentals integrated optical devices that are currently employed in modern optical fiber communications systems and photonic signal processing systems. While there are many texts available in this area, none provide the breadth and depth of coverage and and Applications computational rigor found in this one. The author has distilled the information into a very practical, usable format. In a logical with MATLAB® progression of theory and application, he starts with Maxwell’s equations and progresses directly to optical waveguides (integrated optic and fiber optic), couplers, modulators, nonlinear effects and interactions, and system applications. With up-to-date coverage of applicable algorithms, design guides, material systems, and the latest device and system applications, the book addresses: • Fundamentals of guiding optical waves, including theoretical and simplified techniques • Linear and nonlinear aspects of optical waveguiding • Manipulating lightwaves by coupling and splitting • Interactions of lightwaves and ultra-fast electrical travelling waves in modern optical modulators • Applications of guided wave devices in optical communication systems and optical signal processing Providing fundamental understanding of lightwave guiding and manipulating techniques, the text covers the field of integrated photonics by giving the principles, theoretical and applications. It explains how to solve the optical modes and their coupling as well as how to manipulate lightwaves for applications in communications and signal processing. Le Nguyen Binh K11400 K11400_Cover_mech.indd 1 7/22/11 3:23 PM G W uided ave P hotonics Fundamentals and Applications with MATLAB® Optics and Photonics Series Editor Le Nguyen Binh Monash University, Clayton, Victoria, Australia 1. Digital Optical Communications, Le Nguyen Binh 2. Optical Fiber Communications Systems: Theory and Practice with MATLAB® and Simulink® Models, Le Nguyen Binh 3. Ultra-Fast Fiber Lasers: Principles and Applications with MATLAB® Models, Le Nguyen Binh and Nam Quoc Ngo 4. Thin-Film Organic Photonics: Molecular Layer Deposition and Applications, Tetsuzo Yoshimura 5. Guided Wave Photonics: Fundamentals and Applications with MATLAB®, Le Nguyen Binh G W uided ave P hotonics Fundamentals and Applications with MATLAB® Le Nguyen Binh Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not consti- tute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 2011928 International Standard Book Number-13: 978-1-4398-9716-4 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro- duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy- right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica- tion and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To the memory of my father To my mother To Phuong and Lam Contents Preface............................................................................................................................................xix Author............................................................................................................................................xxi List.of.Abbreviations.and.Notations.......................................................................................xxiii 1. Introduction..............................................................................................................................1 1.1. Historical.Overview.of.Integrated.Optics.and.Photonics........................................1 1.2. Why.Analysis.of.Optical.Guided.Wave.Devices?.....................................................4 1.3. Principal.Objectives.......................................................................................................5 1.4. Chapters.Overview........................................................................................................6 References..................................................................................................................................8 2. Single-Mode Planar Optical Waveguides........................................................................11 2.1. Introduction..................................................................................................................11 2.2. Formation.of.Planar.Single-Mode.Waveguide.Problems.......................................13 2.2.1. Transverse.Electric/Transverse.Magnetic.Wave.Equation.......................13 2.2.1.1. Continuity.Requirements.and.Boundary.Conditions...............14 2.2.1.2. Index.Profile.Construction.............................................................14 2.2.1.3. Normalization.and.Simplification................................................15 2.2.1.4. Modal.Parameters.of.Planar.Optical.Waveguides.....................16 2.3. Approximate.Analytical.Methods.of.Solution.........................................................19 2.3.1. Asymmetrical.Waveguides...........................................................................19 2.3.1.1. Variational.Techniques...................................................................19 2.3.1.2. Wentzel–Kramers–Brilluoin.Method...........................................25 2.3.2. Symmetrical.Waveguides..............................................................................31 2.3.2.1. Wentzel–Kramers–Brilluoin.Eigenvalue.Equation.....................32 2.3.2.2. Two-Parameter.Profile-Moment.Method.....................................33 2.3.2.3. New.Equivalence.Relation.for.Planar.Optical.Waveguides......40 2.3.3. Concluding.Remarks......................................................................................49 2.4. Appendix.A:.Maxwell.Equations.in.Dielectric.Media...........................................49 2.4.1. Maxwell.Equations.........................................................................................49 2.4.2. Wave.Equation.................................................................................................50 2.4.3. Boundary.Conditions.....................................................................................50 2.4.4. Reciprocity.Theorems....................................................................................51 2.4.4.1. General.Reciprocity.Theorem........................................................51 2.4.4.2. Conjugate.Reciprocity.Theorem....................................................51 2.5. Appendix.B:.Exact.Analysis.of.Clad-Linear.Optical.Waveguides........................51 2.5.1. Asymmetrical.Clad-Linear.Profile...............................................................52 2.5.1.1. Eigenvalue.Equation.......................................................................52 2.5.1.2. Mode.Cutoff.....................................................................................53 2.5.2. Symmetrical.Waveguide................................................................................53 2.5.2.1. Eigenvalue.Equation.......................................................................53 2.5.2.2. Mode.Cutoff.....................................................................................53 vii viii Contents 2.6. Appendix.C:.Wentzel–Kramers–Brilluoin.Method,.Turning.Points.and. Connection.Formulae..................................................................................................54 2.6.1. Introduction.....................................................................................................54 2.6.2. Derivation.of.the.Wentzel–Kramers–Brilluoin.Approximate. Solutions.........................................................................................................54 2.6.3. Turning.Point.Corrections.............................................................................57 2.6.3.1. Langer’s.Approximate.Solution.Valid.at.Turning.Point............57 2.6.3.2. Behavior.of.Turning.Point..............................................................59 2.6.3.3. Error.Bound.for.ϕ.Turning.Point...................................................60 2.6.4. Correction.Formulae......................................................................................62 2.6.5. Application.of.Correction.Formulae............................................................64 2.6.5.1. Ordinary.Turning.Point.Problem.................................................64 2.6.5.2. Effect.of.an.Index.Discontinuity.at.a.Turning.Point..................66 2.6.5.3. Buried.Modes.near.an.Index.Discontinuity.at.a.Turning. Point..................................................................................................66 2.7. Appendix.D:.Design.and.Simulation.of.Planar.Optical.Waveguides..................67 2.7.1. Introduction.....................................................................................................67 2.7.2. Theoretical.Background.................................................................................67 2.7.2.1. Structures.and.Index.Profiles........................................................67 2.7.2.2. Optical.Fields.of.the.Guided.Transverse.Electronic.Modes......68 2.7.2.3. Design.of.Optical.Waveguide.Parameters:.Preliminary.Work.70 2.7.3. Simulation.of.Optical.Fields.and.Propagation.in.Slab.Optical. Waveguide.Structures....................................................................................70 2.7.3.1. Lightwaves.Propagation.in.Guided.Straight.Structures...........71 2.7.3.2. Lightwaves.Propagation.in.Guided.Bent.Structures.................73 2.7.3.3. Lightwaves.Propagation.in.Y-Junction.(Splitter).and. Interferometric.Structures.............................................................74 2.7. Problems........................................................................................................................74 References................................................................................................................................76 3. 3D Integrated Optical Waveguides....................................................................................79 3.1. Introduction..................................................................................................................79 3.2. Marcatili’s.Method.......................................................................................................80 3.2.1. Field.and.Modes.Guided.in.Rectangular.Optical.Waveguides...............81 3.2.1.1. Mode.Fields.of.H .Modes...............................................................81 x 3.2.1.2. Boundary.Conditions.at.the.Interfaces........................................84 3.2.2. Mode.Fields.of.E.Modes................................................................................85 y 3.2.3. Dispersion.Characteristics.............................................................................86 3.3. Effective.Index.Method...............................................................................................86 3.3.1. General.Considerations..................................................................................86 3.3.2. A.Pseudo-Waveguide.....................................................................................90 3.3.3. Finite.Difference.Numerical.Techniques.for.3D.Waveguides..................91 3.4. Non-Uniform.Grid.Semivectorial.Polarized.Finite.Difference.Method.for. Optical.Waveguides.with.Arbitrary.Index.Profile..................................................91 3.4.1. Propagation.Equation.....................................................................................91 3.4.2. Formulation.of.Non-Uniform.Grid.Difference.Equation..........................92 3.4.2.1. Quasi-Transverse.Electronic.Mode...............................................93 3.4.2.2. Inverse.Power.Method....................................................................98 Contents ix 3.4.3. Ti:LiNbO .Diffused.Channel.Waveguide.................................................100 3 3.4.3.1. Refractive.Index.Profile.of.the.Ti:LiNbO .Waveguide.............100 3 3.4.3.2. Numerical.Simulation.and.Discussion......................................104 3.5. Mode.Modeling.of.Rib.Waveguides........................................................................112 3.5.1. Choice.of.Grid.Size.......................................................................................115 3.5.2. Numerical.Results.........................................................................................118 3.5.3. Higher.Order.Modes....................................................................................118 3.6. Conclusions.................................................................................................................121 3.7. Problems......................................................................................................................123 References..............................................................................................................................123 4. Single-Mode Optical Fibers: Structures and Transmission Properties...................127 4.1. Optical.Fibers..............................................................................................................127 4.1.1. Brief.History..................................................................................................127 4.1.2. Optical.Fiber:.General.Properties...............................................................128 4.1.2.1. Geometrical.Structures.and.Index.Profile.................................128 4.1.3. Fundamental.Mode.of.Weakly.Guiding.Fibers........................................130 4.1.3.1. Solutions.of.the.Wave.Equation.for.Step.Index.Fiber...............130 4.1.3.2. Gaussian.Approximation.............................................................132 4.1.3.3. Cutoff.Properties...........................................................................135 4.1.3.4. Power.Distribution........................................................................136 4.1.3.5. Approximation.of.Spot.Size.r .of.a.Step.Index.Fiber................138 0 4.1.4. Equivalent.Step.Index.(ESI).Description...................................................138 4.1.4.1. Definitions.of.Equivalent.Step.Index.Parameters.....................139 4.1.4.2. Accuracy.and.Limits.....................................................................140 4.1.4.3. Examples.on.Equivalent.Step.Index.Techniques......................140 4.1.4.4. General.Method.............................................................................141 4.2. Nonlinear.Optical.Effects.........................................................................................141 4.2.1. Nonlinear.Self.Phase.Modulation.Effects.................................................142 4.2.2. Self.Phase.Modulation.................................................................................142 4.2.3. Cross.Phase.Modulation..............................................................................143 4.2.4. Stimulated.Scattering.Effects......................................................................144 4.2.4.1. Stimulated.Brillouin.Scattering...................................................144 4.2.4.2. Stimulated.Raman.Scattering......................................................145 4.2.4.3. Four-Wave.Mixing........................................................................146 4.3. Optical.Fiber.Manufacturing.and.Cabling.............................................................147 4.4. Concluding.Remarks.................................................................................................148 4.5. Signal.Attenuation.and.Dispersion.........................................................................148 4.5.1. Introductory.Remarks..................................................................................149 4.5.2. Signal.Attenuation.in.Optical.Fibers.........................................................151 4.5.2.1. Intrinsic.or.Material.Attenuation................................................151 4.5.2.2. Absorption.....................................................................................151 4.5.2.3. Rayleigh.Scattering.......................................................................151 4.5.2.4. Waveguide.Loss.............................................................................152 4.5.2.5. Bending.Loss..................................................................................152 4.5.2.6. Microbending.Loss.......................................................................152 4.5.2.7. Joint.or.Splice.Loss........................................................................153 4.5.2.8. Attenuation.Coefficient................................................................154

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.