ebook img

Guided Wave Optical Components and Devices: Basics, Technology, and Applications (Optics and Photonics) PDF

467 Pages·2005·32.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Guided Wave Optical Components and Devices: Basics, Technology, and Applications (Optics and Photonics)

Guided Wave Optical Components and Devices This Page Intentionally Left Blank Guided Wave Optical Components and Devices Basics, Technology, and Applications Edited by Bishnu P. Pal INDIAN INSTITUTE OF TECHNOLOGY DELHI ELSEVIER ACADEMIC PRESS AMSTERDAM • BOSTON ° HEIDELBERG ° LONDON ° NEW YORK OXFORD ° PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE SYDNEY • TOKYO Original negative of cover image available from Prof. Wayne Knox, Director of the Institute of Optics, Univ. of Rochester, (585) 273-5220; E-mail: [email protected] Elsevier Academic Press 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK This book is printed on acid-free paper. Copyright © 2006, Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Customer Support" and then "Obtaining Permissions." Library of Congress Cataloging-in-Publication Data Pal, Bishnu P., 1948- Guided wave optical components and devices / Bishnu Pal. p. cm. Includes bibliographical references and index. ISBN 0-12-088481-X (alk. paper) 1. Optoelectronic devices. 2. Integrated optics. 3. Optical wave guides. I. Title. TK8304.P35 2005 621.36'92-dc22 2005012672 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 13:978-0-12-088481-0 ISBN 10: 0-12-088481-X For information on all Academic Press publications visit our Web site at www.academicpress.com Printed in the United States of America 05 06 07 08 09 9 8 7 6 5 4 3 2 1 Working together to grow libraries in developing countries www.elsevier.com I www.bookaid.org I www.sabre.org Dedicated to All my teachers, students, professional colleagues, friends, and close relatives for their encouragement and inspiration towards my academic pursuits and above all for their continued affection and support Bishnu Pal Editor TTThhhiiisss PPPaaagggeee IIInnnttteeennntttiiiooonnnaaallllllyyy LLLeeefffttt BBBlllaaannnkkk Contents 3. MANUFACTURE OF POFS 28 Preface xiii 3.1. Preform and Drawing Method 28 Contributors xvii 3.2. Extrusion Method 30 4. COMPARISON BETWEEN SILICA FIBER AND POLYMER FIBER 30 CHAPTER 1 4.1. Difference in Diameters 30 4.2. Minimum Bend Radius 31 Optical Fibers for Broadband Lightwave 4.3. Numerical Aperture 31 Communication: 4.4. Fiber Bandwidth 31 Evolutionary Trends in Designs 5. APPLICATIONS OF POFs 31 B. P. Pal 5.1. Communication 32 1 5.2. Illumination 36 6. POLYMER FIBER GRATINGS 36 1. INTRODUCTION 1 7. SEGMENTED CLADDING POF 37 2. OPTICAL TRANSPARENCY 2 8. DYE-DOPED POLYMER FIBER 2.1. Loss Spectrum 2 AMPLIFIER 39 2.2. Dispersion Spectrum 3 9. CONCLUSIONS 39 2.3. Dispersion Shifted Fibers 8 10. REFERENCES 40 3. EMERGENCE OF FIBER AMPLIFIERS AND DWDM SYSTEMS 9 3.1. EDFAs 9 3.2. DWDM 10 CHAPTER 3 3.3. Fibers for DWDM Transmission 10 3.4. Dispersion Compensating Fibers 12 Microstructured Optical Fibers T. M. Monro 3.5. Reverse/Inverse Dispersion Fibers 17 4. FIBERS FOR METRO NETWORKS 18 41 5. COARSE WAVELENGTH DIVISION 1. FIBERS WITH MICRON-SCALE MULTIPLEXING 21 STRUCTURE 41 6. COMBATING PMD IN A FIBER 21 2. OVERVIEW OF OPTICAL 7. CONCLUSION 22 PROPERTIES 43 8. ACKNOWLEDGMENTS 22 2.1. Introduction 43 9. REFERENCES 22 2.2. Nonlinearity Tailoring 44 2.3. Dispersion 45 2.4. Polarization 45 CHAPTER 2 2.5. Air-Light Overlap 46 3. FABRICATION APPROACHES 46 Recent Development of a Polymer Optical Fiber and 3.1. Preform Fabrication 46 its Applications 3.2. Fiber Drawing 48 P. L. Chu 3.3. State-of-the-Art 48 27 4. FIBER DESIGN METHODOLOGIES 49 1. INTRODUCTION 27 4.1. Effective Index Methods 49 2. TYPES OF POFs 27 4.2. Structural Methods 49 2.1. PMMA Fiber 27 4.3. Predicting Confinement Loss 51 2.2. Deuterated PMMA POF 27 4.4. Summary 51 2.3. Perfluorinated POF 27 5. SILICA HFS 51 vii viii Contents 5.1. Small-Core Fibers for Nonlinear CHAPTER 6 Devices 51 Some Important Nonlinear Effects in 5.2. Large-Mode Area Fibers for High Power Optical Fibers Applications 54 K. Thyagarajan and A. Ghatak 5.3. Active Fibers 55 91 6. SOFT GLASS FIBERS 58 6.1. Background 58 1. INTRODUCTION 91 6.2. Extreme Nonlinearity 58 2. NONLINEAR POLARIZATION 91 6.3. New Transmission Fibers 59 3. THIRD-ORDER NONLINEAR 6.4. Solid Microstructured Fibers 60 EFFECTS 91 7. PBGFs 61 3.1. SPM 92 8. CONCLUSION AND THE 3.2. Propagation of a Pulse 93 FUTURE 63 3.3. Spectral Broadening due to SPM 94 9. ACKNOWLEDGMENTS 64 3.4. XPM 95 10. REFERENCES 64 3.5. FWM 98 4. CONCLUSIONS 100 5. REFERENCES 100 CHAPTER 4 Photonic Bandgap-Guided Bragg Fibers CHAPTER 7 S. Dasgupta, B. P. Pal and M. R. Shenoy Fiber Optic Parametric Amplifiers for Lightwave 71 Systems 1. INTRODUCTION 71 F. Yaman, Q. Lin and G. P. Agrawal 2. BRAGG FIBERS 72 101 2.1. Bandgap in One-Dimensional Periodic 1. INTRODUCTION 101 Medium 72 2. THEORY OF FWM 101 2.2. Light Propagation in Bragg Fibers 75 3. SINGLE-PUMP PARAMETRIC 2.3. Modal Characteristics 76 AMPLIFIERS 103 3. DISPERSION COMPENSATING BRAGG 4. DUAL PUMP PARAMETRIC FIBER 78 AMPLIFIERS 107 4. BRAGG FIBERS FOR METRO 5. FLUCTUATIONS OF ZDWL 109 NETWORKS 79 6. EFFECT OF RESIDUAL FIBER 5. FABRICATION 80 BIREFRINGENCE 111 6. CONCLUSION 81 7. SUMMARY 114 7. REFERENCES 81 8. ACKNOWLEDGMENTS 114 9. REFERENCES 114 CHAPTER 5 CHAPTER 8 Radial Effective Index Method for the Analysis of Erbium-doped Fiber Amplifiers Microstructured Fibers K. Thyagarajan K. S. Chiang and V. Rastogi 119 83 1. INTRODUCTION 119 1. INTRODUCTION 83 2. EDFA 119 2. THE REIM 84 3. POPULATION INVERSION AND 2.1. Formulation of the Method 84 OPTICAL AMPLIFICATION 120 2.2. Determination of the Effective Index 4. OPTICAL AMPLIFICATION IN Profile 84 EDFAs 121 3. SEGMENTED CLADDING 5. GAIN FLATTENING OF EDFAs 124 FIBER 85 5.1. Gain Flattening Using External 4. HOLEY FIBER 87 Filters 124 5. CONCLUSION 88 5.2. Intrinsically Flat Gain Spectrum 125 6. ACKNOWLEDGMENT 89 6. NOISE IN AMPLIFIERS 126 7. REFERENCES 89 7. EDFAs for the S-Band 128 Contents ix 8. CONCLUSIONS 129 3.5. Application Example 3" Channel 9. ACKNOWLEDGMENTS 129 Reconfiguration 166 10. REFERENCES 129 3.6. Application Example 4: Analytic Solution for the Gain Clamping Problem 167 9 CHAPTER 3.7. Conclusion 169 Fiber Optic Raman Amplifiers 4. TRANSIENT THULIUM-DOPED FIBER G. P. Agrawal AMPLIFIER 169 131 4.1. Introduction 169 4.2. Average Inversion Analysis of TDFA 1. INTRODUCTION 131 Transient: Comparison with 2. FUNDAMENTAL CONCEPTS 131 Experiment 169 2.1. Raman Gain Spectrum 132 4.3. Conclusion 171 2.2. Simple Theory 134 5. CONCLUSION 171 2.3. Gain Saturation 135 6. REFERENCES 171 3. MODERN RAMAN AMPLIFIERS 136 3.1. Broadband Raman Amplifiers 136 3.2. Design of Raman Amplifiers 137 CHAPTER 1 1 4. PERFORMANCE LIMITING FACTORS 138 Analog/Digital Transmission with High-Power 4.1. Spontaneous Raman Scattering 138 Fiber Amplifiers 4.2. Effective Noise Figure 140 P. Dua, K. Lu, N. K. Dutta and J. Jaques 4.3. Rayleigh Backscattering 142 173 4.4. Pump-Noise Transfer 143 1. INTRODUCTION 173 4.5. Effects of PMD 145 2. EXPERIMENT 173 5. AMPLIFICATION OF OPTICAL 2.1. Analog Transmission 173 PULSES 147 2.2. Hybrid Digital/Analog 5.1. Pulse-Propagation Equations 147 Transmission 176 5.2. Effects of Group-Velocity 2.3. Gain Tilt Measurement of the Er/Yb Mismatch 148 5.3. Anomalous Dispersion Regime 149 Co-Doped DCFA 177 3. RESULTS 178 5.4. Normal Dispersion Regime 150 6. REFERENCES 151 4. REFERENCES 180 CHAPTER 1 0 CHAPTER 1 2 Application of Numerical Analysis Erbium-doped Fiber Amplifiers for Dynamic Optical Techniques for the Optimization of Networks Wideband Amplifier Performances A. Srivastava and Y. Sun N. Park, P. Kim, H. Lee and J. Park 181 155 1. INTRODUCTION 181 1. FOREWORD 155 2. EDFAS FOR HIGH CAPACITY 2. POWER EFFICIENCY: L-BAND NETWORKS 181 EDFA 155 2.1. Basic Characteristics of EDFAs 182 2.1. Introduction 155 2.2. System Issues 185 2.2. Pump Wavelength Detuning 156 2.3. Dynamic Network Related 2.3. Fiber Structural Detuning 157 Issues 186 2.4. Conclusion 160 3. EDFAS FOR DYNAMIC 3. GAIN ENGINEERING: RAMAN NETWORKS 187 AMPLIFIER 160 3.1. Gain Dynamics of Single 3.1. Introduction 160 EDFA 187 3.2. Implementation of the Closed Form 3.2. Fast Power Transients in EDFA Raman Equation 160 Chains 190 3.3. Application Example 1" Gain 3.3. System Impairments due to Prediction 162 Transients 192 3.4. Application Example 2: Raman Gain 3.4. Channel Protection Schemes 195 EngineeringmThe Inverse Scattering 4. ACKNOWLEDGMENTS 200 Problem 163 5. REFERENCES 201

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.