ebook img

GTC OSIRIS z-band imaging of Y dwarfs PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview GTC OSIRIS z-band imaging of Y dwarfs

Astronomy&Astrophysicsmanuscriptno.20696 (cid:13)c ESO2013 January16,2013 LettertotheEditor GTC OSIRIS z-band imaging of Y dwarfs N.Lodieu1,2⋆,V.J.S.Be´jar1,2,andR.Rebolo1,2,3 1 InstitutodeAstrof´ısicadeCanarias(IAC),CalleV´ıaLa´cteas/n,E-38200LaLaguna,Tenerife,Spain e-mail:nlodieu,vbejar,[email protected] 2 DepartamentodeAstrof´ısica,UniversidaddeLaLaguna(ULL),E-38205LaLaguna,Tenerife,Spain 3 ConsejoSuperiordeInvestigacionesCientficas,CSIC,Spain 3 January16,2013;January16,2013 1 0 ABSTRACT 2 Aims.Theaimoftheprojectistocontributetothecharacterisationofthespectralenergydistributionofthecoolestbrowndwarfs n discoveredtodate,theYdwarfs. a Methods.Weobtainedz-bandfar-redimagingforsixYdwarfsandaT9+Y0binarywiththeOSIRIS(OpticalSystemforImaging J andlowResolutionIntegratedSpectroscopy)instrumentonthe10.4-mGranTelescopiodeCanarias(GTC). 5 Results.WedetectfiveofthesevenknownYdwarfsinthez-band,infertheiroptical-to-infraredcolours,andmeasuretheirproper 1 motions.Wefindahigherdispersioninthez−J andz−H coloursofY0dwarfsthaninTdwarfs.Thisdispersionisfoundtobe correlatedwith H−w2.Thehighdispersionintheoptical-to-infraredcoloursofYdwarfsandthepossibleturn-overtowardsbluer ] coloursmaybeaconsequenceofthepresenceofsulfidecloudswithdifferentthicknesses,thedepletionofalcalines,and/orgravity R effects. S Keywords.Stars:low-mass—Stars:browndwarfs—techniques:photometric . h p - o 1. Introduction Ourgoalistocontributetothespectralenergycharacterisa- r tionoftheY dwarfs,pushingthelimitsoftheGranTelescopio st Theclassicalstellarsequence(Morganetal.1943)hasnowbeen de Canarias (GTC). This letter describes the optical imag- a extended to include very cool objects that bridge the gap be- ing obtained for six Y dwarfs with OSIRIS (Optical System [ tween brown dwarfs and planets, thanks to the advent of the for Imaging and low Resolution Integrated Spectroscopy; 1 WideInfraredSurveyExplorer(WISE;Wrightetal.2010)satel- Cepaetal. 2000) on the 10.4-m GTC. We present the imaging v lite. The “Y” class, originally proposed by Kirkpatricketal. campaignandtheassociateddatareductionandastrometry.We 0 (1999), now consists of 15 members (Cushingetal. 2011; exposeourresultsandplacethemintocontextwithrespecttothe 8 Liuetal.2011;Kirkpatricketal.2012;Tinneyetal.2012)with spectralenergydistributionsofTdwarfs(Leggettetal.2012b). 2 spectraltypesequalto,orlaterthan,Y0(tentativeclassification) 3 and effective temperaturesbelow 500K. Two additionalcandi- . dates have been reported,but their faintness currentlyhampers 2. Far-redopticalimaging 1 0 spectraltyping(Liuetal.2012;Luhmanetal.2011). 2.1.Observations 3 The number of late-T dwarfs with spectral types later 1 than T6 has increased dramatically over the past few years The OSIRIS instrument is mounted on the 10.4-m GTC op- : thankstolarge-scalesurveyssuchastheUKIRTInfraredDeep erating at the Observatory del Roque de Los Muchachos (La v i Sky Survey (UKIDSS; Lodieuetal. 2007; Pinfieldetal. 2008; Palma,CanaryIslands).Thedetectorconsistsoftwo2048×4096 X Burninghametal. 2009, 2010a,b), the Canada-France-Hawaii MarconiCCD42-82separatedbyan8arcsecgapandoperatesat r BrownDwarfSurvey(Delormeetal.2008a,b;Reyle´ etal.2010; opticalwavelengths,from365to1000nm.Theunvignettedin- a Albertetal.2011),andWISE(Kirkpatricketal.2012).TheT/Y strumentfield-of-viewisabout7by7arcminwithanunbinned transitionischaracterisedbyarapidshiftofthepeakofthespec- pixelscaleof0.125arcsec.Weemployeda2×2binningbecause tralenergydistributionfromthenear-infraredtothemid-infrared itiscurrentlythestandardmodeofobservations. andbynarrowerpeaksinthe H band(Cushingetal.2011)with We imaged six of the seven Y dwarfs published by the possible disappearanceof the potassiumabsorptionbeyond Cushingetal. (2011) and the T9+Y0 binary resolved by 0.7 microns (Leggettetal. 2012b). Because of to their nature Liuetal. (2012) using the Sloan z filter available on OSIRIS. and low temperature, it is importantto characterise their spec- Table1providestheoriginalnameswith thefirstfourdigits of tral energydistributionsfrom the optical to the mid-infraredto therightascensionanddeclinationasprovidedinCushingetal. understandthechemistryatplayinthesecoolatmospheres. (2011)alongwiththeircurrentspectraltypes(Kirkpatricketal. 2012). This information is supplemented with the coordinates ⋆ Based on observations made with the Gran Telescopio Canarias measured on the GTC OSIRIS images (when the target is de- (GTC), installed in the Spanish Observatorio del Roque de los tected), the z-bandmagnitudeswith theirassociated errorbars, MuchachosoftheInstitutodeAstrof´ısicadeCanarias,intheislandof the dates of observations, and the numbers of individual im- LaPalma. ages with their respective integration times in seconds. Figure 1 N.Lodieuetal.:GTCOSIRISz-bandimagingofYdwarfs Table 1. GTC/OSIRIS astrometry, photometry (or 3σ lower limits), observing information, and photometry for six Y dwarfs and a T9+Y0 binary. The near-infrared photometry is taken from Leggettetal. (2012a), except for the H-band magnitude of WISEJ1828+2650(Kirkpatricketal.2012). WISEJ... (SpT) R.A. dec z Date ExpT J H z−J µ cosδ µ α δ hh:mm:ss.sss ◦:’:′′ mag dd/mm/yy sec mag mag 0146+4234(Y0) 01:46:56.576 +42:34:09.80 24.10±0.13 03/09/12 50×50 19.40±0.25 18.71±0.24 5.39±0.27 −0.52±0.08 −0.11±0.08 0410+1502(Y0) 04:10:22.933 +15:02:42.91 22.66±0.09 15/09/12 40×50 19.44±0.03 20.02±0.05 3.22±0.09 +1.20±0.08 −2.17±0.08 1405+5534(Y0p) >23.85 06/08/12 45×50 21.06±0.06 21.41±0.08 >2.79 — — 1738+2732(Y0)a 17:38:35.585 +27:32:58.28 22.80±0.09 17/06/12 30×50 20.05±0.09 20.45±0.09 2.75±0.13 +0.32±0.10 −0.39±0.10 1828+2650(≥Y2) >24.46 09/09/12 40×50 23.48±0.23 22.85±0.24 >0.98 — — 2056+1459(Y0) 20:56:29.028 +14:59:54.64 23.09±0.08 15/06/12 40×50 19.94±0.04 19.96±0.04 3.66±0.09 +0.89±0.10 +0.61±0.10 1217+1626(T9+Y0)12:17:57.144 +16:26:35.99 21.60±0.03 15/12/12 15×60 17.83±0.02 18.18±0.05 3.77±0.04 +1.41±0.10 −1.96±0.10 aWealsotargetedthisobjectintheibandwithOSIRIS.Wemeasureda3σlowerlimitofi>25.3mag,translatingintoi−z>2.4magand i−J>5.8mag. 1showstheGTCOSIRISfindingcharts(twoarcminaside)of tosomeofourtargets.We choseanapertureequalto ∼3times all the observed objects (circled) with north up and east to the thefull-width-at-half-maximumandcheckedthatthetargetwas left.Table1alsolistsrevisedJandHmagnitudes(Leggettetal. well-subtractedbyourPSFanalysiswithoutresiduals.Wetrans- 2012a)andtheassociatedz−J coloursplottedinFig.2. formed the instrumental magnitudes into apparent magnitudes Theobservationswereconductedon15and17June,6and usingthezero-pointsderivedforthephotometricstandardfields 13 August, 3, 5, 9, and 16 September,and 15 December2012. observedonthesamenight.Thefinalcalibratedmagnitudesof All observations were conducted under average seeing of 0.8– the fourY dwarfs detected on the OSIRIS images are given in 1.3 arcsec, photometric or clear conditions, grey time, and air- Table 1. Forthe remainingsources, we list the 3σlowerlimits mass less than 1.5. Bias and skyflats were obtained during the (Table1)computedfromtheroot-mean-squareoftheskyatthe afternoonormorningoftherespectivenights.ForeachYdwarf, nominalpositionofthe targetcomparedtothe peakof theflux we obtained three to five series of ten frames with 50 sec on- ofthreenearby(non-saturatedandisolated)stars.Afteraverag- source individual integrations, except for the coolest (WISE ingallimagesforWISE J1828+2650,we canseta lowerlimit J1828+2650 tentatively classified as >Y2; Kirkpatricketal. ofz>24.46mag,translatingintoz−H>1.6mag(andz−J>0.9 2012) forwhich we repeated the series fourtimes to try to de- mag)forthis(tentative)Y2dwarf. tecttheobjectinthez-bandandforWISEJ1217+1626AB,for whichweobtainedthreeseriesoffiveframesof60sec. 2.3.Astrometry Weastrometricallycalibratedthecombinedscienceframeswith 2.2.Datareductionandphotometry IRAF(daofind,ccxymatch,andccmaproutines)usingbright WereducedtheOSIRISSloanz-bandimagesinastandardman- pointsourcesfrom2MASS(Cutrietal.2003)orSDSSDR8in nerwithIRAF1(Tody1993).First,wesubtractedthemeanbias thecaseofWISEJ1405p5534.Wetypicallyfound50–100stars and divided by the normalised averaged master skyflat to each (dependingoncrowding)intheOSIRISfield-of-view,resulting individualscienceframe.Then,wecombinedeachsetoftenim- in an astrometric calibration better than 0.1–0.15 arcsec. The agestakenwithoutdithering,andfinallywecombinedthosesets, GTC OSIRIS coordinates (right ascension and declination) of applyingtheoffsetstocreateamasterscienceframe.Inthecase the five objects detected in the z-band are listed in columns 2 of WISE J1217+1626AB, images were sky-subtracted before and3ofTable1.Wemeasuredpropermotions,consistentwith thecombination. the values quoted by Marshetal. (2012) and Liuetal. (2012), thankstothe2.0–2.5yearbaselinebetweentheGTCandWISE Wephotometricallycalibratedthez-bandimageswithSloan observations. The error bars of each component of the proper standard fields (Smithetal. 2002) or with Sloan images of the motiontakeintoaccounttheWISEastrometricaccuracy(0.15– same field, using point sources with photometric errors below 0.17arcsec)andconservativeerrorsontheGTCcentroidof0.15 0.02–0.05mag.We measuredinstrumentalmagnitudesfor5 to arcsec (Table 1). We find high motionsas expected forobjects 10 stars in those fields and derived zero points ranging from 27.976±0.037to28.091±0.049mag. lyingatdistancesofonlyafewparsecs. WedetectedfourofthesixYdwarfsandtheT9+Y0binary (unresolvedinourimages)withOSIRISinthez-band(Table1; 3. Discussionandconclusions Fig.1).Wemeasuredthephotometryoftheclosestsourcetothe nominalpositionoftheWISEsource(Table1),exceptforWISE We reported in this letter the first far-red optical detection of J1410+1502andWISEJ1217+1626AB,whichhavemovedbe- fourY0dwarfsandtheunresolvedT9+Y0binaryfromLiuetal. yond the five-arcsec circle drawn in Fig. 1 due to their high (2012), which are among the coolest brown dwarfs known to propermotion(∼2.5arcsec/yr).Tomeasurethemagnitudes,we date.AllfourY0dwarfswithz-banddetectionhavemagnitudes performedapertureandpoint-spreadfunction(PSF)photometry in the range 22.8–24.1mag, implying z− J and z−H colours usingDAOPHOTinIRAFbecauseofthepresenceofobjectsclose spanning 2.7–5.2 mag and 2.3–5.4 mag, respectively (Fig. 2). Wealsopresentedlowerlimitofz−Jof2.79magand0.98mag 1 IRAF is distributed by the National Optical Astronomy forWISEJ1405+5534(T0pec?)andWISEJ1828+2650(>T2), Observatories, which are operated by the Association of Universities respectively. forResearchinAstronomy,Inc.,undercooperativeagreementwiththe Figure2showsthez−Jandz−HcoloursoftheY0dwarfsas NationalScienceFoundation afunctionofspectraltype(blackdotswitherrorbarsandarrows 2 N.Lodieuetal.:GTCOSIRISz-bandimagingofYdwarfs Fig.1.FindingchartsforthesixYdwarfsandtheT9+Y0binaryimagedinSloanzwithGTC/OSIRIS.Northisupandeastisleft. Imagesare1×1arcminTargetsareorderedbyincreasingrightascensionfromlefttorightstartingfromthetopleftcorner.Theopen circleshavearadiusoffivearcsecandmarktheWISEposition oftheYdwarfs,showingthemotionoftheobjectwhendetected (smallredcirclewithtwoarcsecradius). 6 0146 5 0146 5 UGPS0722 4 1217 2056 JMKO 0410 HMKO4 − B) 3 11743085 − B) UGPS0722 A A 1217 z( z( 2056 3 2 0410 1405 1738 1 1828 2 1828 T 2 T 4 T 6 T 8 Y 0 T 2 T 4 T 6 T 8 Y 0 Spectral Type Spectral Type Fig.2. z − J (left) and z− H (right) colours of Y0 dwarfs (filled dots for detections and arrows for lower limits) as a function of spectral type compared to the coloursof late-T dwarfs from UKIDSS (diamonds;Burninghametal. 2010b), Sloan (asterisks; Golimowskietal.2004;Knappetal.2004;Chiuetal.2006),Canada-Francebrowndwarfsurvey(squares;Albertetal.2011),and thesampleofLeggettetal.(2012a,triangles). for lower limits) along with the colours of T dwarfs. Here we which looks peculiar in all diagrams. This trend seems to start adoptedaspectraltypeofT9.5+/-0.5forthebinaryT9+Y0.The offaroundaspectraltypeof∼T8andagreeswiththebluerY−J dispersionobservedforY0dwarfsisgreaterthanforTdwarfs. colours observed with cooler temperatures for the Y class and WeaddedtothisplotUGPSJ072227.51−054031.2classifiedas theexcessoffluxinthe840–940nmregioninthespectrumof T10 by Lucasetal. (2010) and Leggettetal. (2012b), but pro- WISE J2056+1459 compared to UGPS J072227.51−054031.2 posedastheT9standardbyCushingetal.(2011). (Leggettetal.2012a).TheT9+Y0binaryfromLiuetal.(2012) showsanintermediatepositionbetweenlate-TandY0dwarfs.A Figure 3 displays the (z − H,H − w2) colour-colour dia- possibleexplanationfortherelativechangesinthe z-bandmay gramforthefourY0dwarfsandtheT9+Y0binary(filleddots) be associated to the disappearance of the strong atomic potas- detected in z and for the two sources with upper limits (left- siumandsodiumbandsintomolecules(e.g.KCl orNaCl)and 2 pointing arrows). This plot takes into account the improved possiblyotheralkalisaswemovetowardscoolertemperatures. near-infraredphotometryfromLeggettetal.(2012a),compared to the original values in Table 2 of Kirkpatricketal. (2012). The spread in the z− J and z− H colours of Y0 dwarfs is We note a trend towards bluercolours with increasing H −w2 ∼2.5-3.0mag,muchwiderthanthespreadobservedthroughout fromlate-TdwarfstoY0dwarfs,exceptforWISEJ0146+4234, theTdwarfsequence(Fig.2)andgreaterthanthespreadinthe 3 N.Lodieuetal.:GTCOSIRISz-bandimagingofYdwarfs tation efficiencies increases the spread in the J − H colours of 9 1828 brown dwarfs with temperatures below 600 K. These sulfide cloudsmayberesponsibleforthespreadobservedintheoptical- 8 to-infraredcoloursofYdwarfs,suggestingthattheatmosphere 1405 of WISE J0146 may contain thicker clouds and higher gravity 7 thantheotherY0dwarfsinoursample.Table3ofLeggettetal. (2012a)confirmsthatbrowndwarfswithatemperatureof400K w2)MKO6 1738 0410 2056 ianfffleucetendcebdybtyhinthicclkoeurdsc.loAusdspowinotuelddobuetfaabinotveer,itnheYsathmaenethffoescet − (H 1217 could occur in the z band. Moreover, we observe a correlation 5 between the z − H and Y − H colours of the three Y0 dwarfs UGPS0722 (Fig. 4) commonto oursample andLeggettetal. (2012a). The 4 bluerobjectsinz−H turnouttobealsoratherblueinY−H.If 0146 thistrendholds,wewouldpredictY −H=0.96magforWISE 3 J0146+4234. Finally, it is important to complete the sample of z-band 2 3 4 5 6 measurementsforYdwarfsinthesouthernhemisphereandob- z(AB) − HMKO tain far-red optical spectroscopy, which is only available for Fig.3.(z−H,H−w2)colour-colourdiagramforourtargets(filled WISEJ2056+1459(Leggettetal.2012a).Thismayshowdras- dotsandarrowsforlowerlimits),late-Tdwarfs(opentriangles; tic changes as indicated by the z-band photometry, which can Leggettetal. 2012a),andUGPSJ0722227.51−054031.2(open probechangesintheatmosphericpropertiesresponsibleforthe trianglewitherrorbars;Lucasetal.2010). far-red spectralenergydistribution of these browndwarfs. Our photometry would also help the modellers to reproduce this part of the spectral energy distribution, disentangling the ef- 1.5 fects of clouds,gravity, and pressure-broadenedpotassium and sodium bands. Thirdly, the relatively blue optical-to-infrared colours of Y0 dwarfs and the possible turnover towards even 1.0 Known T9 bluer colours with lower temperatures could have a signif- icant impact on the strategies currently used to identify Y UGPS0722 dwarfs in large-scale surveys, such as UKIDSS, CFBDS, Pan- 0.5 H)MKO 1405 S(LtaSrSrsT(SDceiaecnocneeCtoalll.a2b0o1ra1t)i,onanedtalal.rg2e00sy9n).opticsurveytelescope − (Y 1217 0.0 Acknowledgements. NL was funded by the Ramo´n y Cajal fellowship num- ber08-303-01-02.ThisresearchhasbeensupportedbytheSpanishMinistryof 2056 EconomicsandCompetitivenessundertheprojectsAYA2010-19136,AYA2010- 1828 -0.5 0410 21308-C3-02, AYA2010-21308-C03-03 and AYA2010-20535. We are very grateful to the GTC operation team and to Antonio Cabrera-Lavers for his support at all stages of this project. We thank Jose´ Alberto Rubin˜o, Ricardo 1738 Genova Santos, Rafael Barrena, and Angela Hempel forobtaining photomet- -1.0 ric calibration at the Isaac Newton telescope, and Bartek Gauza, Mar´ıa Rosa 1 2 3 4 5 z(AB) − HMKO ZapateroOsorioandKarlaPen˜aRam´ırezfortheirhelpinobtainingsomeofthe OSIRIS/GTCimages. Fig.4.(z−H,Y−H)colour-colourdiagramforourtargets(filled ThisworkisbasedonobservationsmadewiththeGranTelescopioCanarias dotsandarrowsforlowerlimits),UGPSJ0722227.51−054031.2 (GTC), operated on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrof´ısica de Canarias. (open triangle with the error bars; Lucasetal. 2010), and This research has been supported by the Spanish Ministry of Economy and the known T9, CFBDSIR145829.0+101343.0 (open triangle; Competitiveness(MINECO)underthegrantAYA2010-19136. Delormeetal.2010). ThisresearchhasmadeuseoftheSimbadandVizierdatabases,operated attheCentredeDonne´esAstronomiquesdeStrasbourg(CDS),andofNASA’s AstrophysicsDataSystemBibliographicServices(ADS). J−KcoloursofLdwarfs(Hawleyetal.2002).Thisspreadcan be qualitativelyexplainedusing recentmodelsby Morleyetal. References (2012),whichproposethattheamountofsulfidecloudspresent intheatmospheresoftheseYdwarfsstronglyimpactstheirspec- Albert,L.,Artigau,E´.,Delorme,P.,etal.2011,AJ,141,203 Burningham,B.,Leggett,S.K.,Lucas,P.W.,etal.2010a,MNRAS,404,1952 tralenergydistributions(notethatthisisnotthecaseforironor Burningham,B.,Pinfield,D.J.,Leggett,S.K.,etal.2009,MNRAS,395,1237 silicate clouds which play a role at higher temperatures where Burningham,B.,Pinfield,D.J.,Lucas,P.W.,etal.2010b,MNRAS,406,1885 theL/Ttransitiontakesplace).Indeed,Figure5ofMorleyetal. Cepa,J.,Aguiar,M.,Escalera, V.G.,etal.2000,inSociety ofPhoto-Optical (2012) shows that the presence of sulfide clouds decreases the Instrumentation Engineers (SPIE) Conference Series, Vol. 4008, Society emergingflux in the 0.8–1.3micronswith lowereffectivetem- of Photo-Optical Instrumentation Engineers (SPIE)Conference Series, ed. M.Iye&A.F.Moorwood,623–631 peratures (starting off below ∼900K). Hence, the clouds af- Chiu,K.,Fan,X.,Leggett,S.K.,etal.2006,AJ,131,2722 fect primarily Y and J but also the z-band, which is what we Cushing,M.C.,Kirkpatrick,J.D.,Gelino,C.R.,etal.2011,ApJ,743,50 observe. Moreover, this effect seems to increase with decreas- Cutri,R.M.,Skrutskie,M.F.,vanDyk,S.,etal.2003,2MASSAllSkyCatalog ing sedimentation efficiency (the f parameter in the models ofpointsources,2246 sed Deacon,N.R.,Liu,M.C.,Magnier,E.A.,etal.2011,AJ,142,77 of Marleyetal. (2002)). Similarly, Figure 10 of Morleyetal. Delorme,P.,Albert,L.,Forveille,T.,etal.2010,A&A,518,A39 (2012) demonstrates that the combination of a wide range of Delorme,P.,Delfosse,X.,Albert,L.,etal.2008a,A&A,482,961 gravitiesandpresenceofsulfidecloudswithavarietysedimen- Delorme,P.,Willott,C.J.,Forveille,T.,etal.2008b,A&A,484,469 4 N.Lodieuetal.:GTCOSIRISz-bandimagingofYdwarfs Golimowski,D.A.,Leggett,S.K.,Marley,M.S.,etal.2004,AJ,127,3516 Hawley,S.L.,Covey,K.R.,Knapp,G.R.,etal.2002,AJ,123,3409 Kirkpatrick,J.D.,Gelino,C.R.,Cushing,M.C.,etal.2012,ApJ,753,156 Kirkpatrick,J.D.,Reid,I.N.,Liebert,J.,etal.1999,ApJ,519,802 Knapp,G.R.,Leggett,S.K.,Fan,X.,etal.2004,AJ,127,3553 Leggett,S.K.,Morley,C.V.,Marley,M.S.,etal.2012a,ArXive-prints Leggett,S.K.,Saumon,D.,Marley,M.S.,etal.2012b,ApJ,748,74 Liu,M.C.,Delorme,P.,Dupuy,T.J.,etal.2011,ApJ,740,108 Liu,M.C.,Dupuy,T.J.,Bowler,B.P.,Leggett,S.K.,&Best,W.M.J.2012, ApJ,758,57 Lodieu,N.,Pinfield,D.J.,Leggett,S.K.,etal.2007,MNRAS,379,1423 LSSTScienceCollaboration,Abell,P.A.,Allison,J.,etal.2009,ArXive-prints Lucas,P.W.,Tinney,C.G.,Burningham,B.,etal.2010,MNRAS,L124 Luhman,K.L.,Burgasser,A.J.,&Bochanski,J.J.2011,ApJL,730,L9 Marley,M.S.,Seager,S.,Saumon,D.,etal.2002,ApJ,568,335 Marsh,K.A.,Wright,E.L.,Kirkpatrick,J.D.,etal.2012,ArXive-prints Morgan,W.W.,Keenan, P.C.,&Kellman, E.1943,Anatlas ofstellar spec- tra,withanoutlineofspectralclassification(Chicago,Ill.,TheUniversityof Chicagopress) Morley,C.V.,Fortney,J.J.,Marley,M.S.,etal.2012,ApJ,756,172 Pinfield,D.J.,Burningham,B.,Tamura,M.,etal.2008,MNRAS,390,304 Reyle´,C.,Delorme,P.,Willott,C.J.,etal.2010,A&A,522,A112 Smith,J.A.,Tucker,D.L.,Kent,S.,etal.2002,AJ,123,2121 Tinney,C.G.,Faherty,J.K.,Kirkpatrick,J.D.,etal.2012,ApJ,759,60 Tody,D.1993,inAstronomicalSocietyofthePacificConferenceSeries,Vol.52, Astronomical Data Analysis Software and Systems II, ed. R. J. Hanisch, R.J.V.Brissenden,&J.Barnes,173 Wright,E.L.,Eisenhardt,P.R.M.,Mainzer,A.K.,etal.2010,AJ,140,1868 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.