Landolt-Börnstein / New Series Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series Units and Fundamental Constants in Physics and Chemistry Elementary Particles, Nuclei and Atoms (Group I) (Formerly: Nuclear and Particle Physics) Molecules and Radicals (Group II) (Formerly: Atomic and Molecular Physics) Condensed Matter (Group III) (Formerly: Solid State Physics) Physical Chemistry (Group IV) (Formerly: Macroscopic Properties of Matter) Geophysics (Group V) Astronomy and Astrophysics (Group VI) Biophysics (Group VII) Advanced Materials and Technologies (Group VIII) Some of the group names have been changed to provide a better description of their contents. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series Group III: Condensed Matter Volume 34 Semiconductor Quantum Structures Subvolume A Growth and Structuring G. Bauer, A. Forchel, P. Gilliot, F. Henneberger, S. Höfling, B. Hönerlage, E. Kasper, C. Klingshirn, C. Schneider, G. Springholz Edited by C. Klingshirn ISSN 1615-1925 (Condensed Matter) ISBN 978-3-540-63347-1 Springer Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Vol. III/34A: Editor: C. Klingshirn At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. Vols. published after v. 1 of group I have imprint: Berlin, New York, Springer-Verlag Includes bibliographies. 1. Physics--Tables. 2. Chemistry--Tables. 3. Engineering--Tables. I. Börnstein, R. (Richard), 1852-1913. II. Landolt, H. (Hans), 1831-1910. III. Physikalisch-chemische Tabellen. IV. Title: Numerical data and functional relationships in science and technology. QC61.23 502'.12 62-53136 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2013 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product Liability: The data and other information in this handbook have been carefully extracted and evaluated by experts from the original literature. Furthermore, they have been checked for correctness by authors and the editorial staff before printing. Nevertheless, the publisher can give no guarantee for the correctness of the data and information provided. In any individual case of application, the respective user must check the correctness by consulting other relevant sources of information. Cover layout: Erich Kirchner, Heidelberg Typesetting: Authors, Boller Mediendesign (Marion Boller), Dielheim, and Landolt-Börnstein Editorial Office, Heidelberg SPIN: 10426826 63/3020 - 5 4 3 2 1 0 – Printed on acid-free paper Editor C. Klingshirn Karlsruher Institut für Technologie (KIT) Institut für Angewandte Physik D-76131 Karlsruhe, Germany [email protected] Authors G. Bauer B. Hönerlage Johannes Kepler-Universität Linz CNRS - Université de Strasbourg Institut für Halbleiter- und Festkörperphysik Institut de Physique et Chimie des Matériaux de A-4040 Linz, Austria Strasbourg (IPCMS) [email protected] Département d’Optique ultrarapide et Nanophotonique (DON) A. Forchel F-67034 Strasbourg cedex 2, France Universität Würzburg [email protected] Technische Physik, Wilhelm-Conrad-Roentgen- Research Center for Complex Material Systems E. Kasper D-97074 Würzburg, Am Hubland, Germany Universität Stuttgart [email protected] Institut für Halbleitertechnik D-70569 Stuttgart, Germany P. Gilliot [email protected] CNRS - Université de Strasbourg Institut de Physique et Chimie des Matériaux de C. Klingshirn Strasbourg (IPCMS) Karlsruher Institut für Technologie (KIT) Département d’Optique ultrarapide et Institut für Angewandte Physik Nanophotonique (DON) D-76131 Karlsruhe, Germany F-67034 Strasbourg cedex 2, France [email protected] [email protected] C. Schneider F. Henneberger Universität Würzburg Humboldt-Universität zu Berlin Technische Physik, Wilhelm-Conrad-Roentgen- Institut für Physik Research Center for Complex Material Systems D-12489 Berlin, Germany D-97074 Würzburg, Am Hubland, Germany [email protected] [email protected] S. Höfling G. Springholz Universität Würzburg Johannes Kepler-Universität Linz Technische Physik, Wilhelm-Conrad-Roentgen- Institut für Halbleiter- und Festkörperphysik Research Center for Complex Material Systems A-4040 Linz, Austria D-97074 Würzburg, Am Hubland, Germany [email protected] [email protected] Landolt-Börnstein Editorial Office Tiergartenstraße 17 D-69121 Heidelberg, Germany e-mail: [email protected] Internet http://www.springermaterials.com Preface The concept of the Landolt-Börnstein volumes of New Series Group III, Vols. 34 A to C on Semiconductor Quantum Structures is the following: The subvolumes C1 to C3 cover the optical properties of quantum structures of group IV, III-V, IIb-VI, Ib-VII and IV-VI semiconductors including the theoretical models to describe and the experimental techniques to measure them. They have already been published in the years 2001 to 2007. The subvolumes B1 and B2 cover the electronic transport properties in quantum structures. The first one dedicated to quantum point contacts and quantum wires appeared in 2001, while the second one is under preparation. The volume III/34 will be completed with this subvolume A, which covers the growth and fabrication of semiconductor quantum structures of various quasi-dimensionalities. The outline of this book is given below in the introduction. Acknowledgements The editor thanks all his coauthors for their careful and dedicated work in the preparation of their manuscripts and for fruitful and stimulating discussions not only during this book project. Furthermore, the editor thanks Dr. D. Schaadt (Institut für Angewandte Physik, Karlsruher Institut für Technologie KIT, Karlsruhe, Germany) for critical reading and important amendments to the general chapters 2 to 4. Thanks are due to many colleague-scientists and publishing houses for the permission to use figures from their work. Thanks are also due to Professor Dr. W. Martienssen (†), the former editor in chief of Landolt- Börnstein, and Dr. W. Polzin (†) for their steady and demanding interest in the progress of this volume even after the retirement from their functions, but even more so to the intermediate Landolt-Börnstein team K. Sora and Dr. S. Scherer and the new one Dr. M. Klinge and Dipl.-Phys. A. Endemann. Karlsruhe, July 2013 The Editor Table of contents III/34 Semiconductor Quantum Structures Subvolume A: Growth and Structuring (edited by C. Klingshirn) 1 Introduction (C. KLINGSHIRN) ............................. 1 References for 1 ..................................... 3 2 Growth of quasi two-dimensional structures (C. KLINGSHIRN) ............ 4 2.1 Inversion layers ..................................... 4 2.2 Single heterotransitions ................................. 5 2.3 Single and multiple quantum wells, coupled quantum wells and superlattices ...... 6 2.4 Relevant growth techniques ............................... 9 2.4.1 Molecular beam epitaxy ................................. 9 2.4.2 Hot wall (beam) epitaxy ................................. 11 2.4.3 Pulsed laser deposition .................................. 12 2.4.4 Metal organic chemical vapour deposition ........................ 12 2.4.5 Other Methods ...................................... 13 2.5 Doping ......................................... 14 References for 2 ..................................... 16 3 Growth and preparation of quasi one-dimensional systems (C. KLINGSHIRN) .... 19 3.1 Structuring of quantum wells by lithography and etching or by ion implantation .... 19 3.2 Cleaved edge overgrowth ................................ 20 3.3 Growth on prepatterned surfaces ............................. 20 3.4 Growth of nano rods and references to some other techniques .............. 21 References for 3 ..................................... 23 4 Growth and preparation of quasi zero-dimensional structures (C. KLINGSHIRN) ... 25 4.1 Structuring of quantum wells .............................. 25 4.1.1 Lithography and etching ................................. 25 4.1.2 Cleaved edge overgrowth ................................ 25 4.1.3 Definition by electrodes or stressors ........................... 26 VIII Table of contents 4.2 Precipitation ....................................... 27 4.2.1 In glasses ........................................ 27 4.2.2 In aqueous or organic solutions or in sol-gel systems .................. 29 4.2.3 Micelles ......................................... 29 4.2.4 Some further chemical routes .............................. 30 4.3 Self assembly e.g. by Stranski-Krastanov or Volmer-Weber growth modes ....... 30 4.4 Miscellaneous techniques ................................ 33 References for 4 ..................................... 34 5 Examples for group IV semiconductors (E. KASPER) ................. 37 5.1 General remarks on group IV semiconductors and industrial needs ........... 37 5.1.1 Some general properties ................................. 37 5.1.2 Dimension scaling .................................... 40 5.1.3 Microelectronics material requirements ......................... 40 5.1.3.1 More Moore ....................................... 41 5.1.3.2 More than Moore and beyond CMOS .......................... 44 References for 5.1 .................................... 47 5.2 Layer growth by epitaxy ................................. 48 5.2.1 Requirements on a SiGe-MBE system .......................... 48 5.2.2 UHV conditions ..................................... 49 5.2.3 Sources of atomic and molecular beams ......................... 51 5.2.4 Substrate heating and cleaning .............................. 53 5.2.5 In-situ analysis ...................................... 54 References for 5.2 .................................... 56 5.3 Quasi-two-dimensional systems (quantum wells) .................... 57 5.3.1 Influence of strain on band structure ........................... 57 5.3.1.1 Hydrostatic strain .................................... 57 5.3.1.2 Uniaxial strain ...................................... 58 5.3.2 Band alignment of strained SiGe ............................. 60 5.3.2.1 Average valence band energy (cid:1831)(cid:2932)(cid:2868) ............................ 60 5.3.2.2 Compressive strain ................................... 61 5.3.2.3 Tensile strain ...................................... 62 5.3.3 Modulation doped field effect transistors (MODFETs) ................. 63 5.3.3.1 Low-temperature properties of two-dimensional modulation-doped electron and hole gases ........................................... 63 5.3.3.2 Pseudomorphic MODFETs ............................... 65 5.3.3.3 Virtual substrate MODFETs ............................... 66 References for 5.3 .................................... 69 5.4 One-dimensional systems (quantum wires) ....................... 70 5.4.1 VLS growth ....................................... 70 5.4.2 Self-aligned wire etching/oxidation procedure ...................... 71 Table of contents IX References for 5.4 .................................... 74 5.5 Zero-dimensional systems (quantum dots) ........................ 75 5.5.1 Self-assembling techniques ............................... 75 5.5.2 Stranski-Krastanov growth on prepatterned substrates .................. 76 References for 5.5 .................................... 86 6 Examples for III-V semiconductors (S. HÖFLING, C. SCHNEIDER, A. FORCHEL) .... 89 6.1 Growth and preparation of quantum wells on GaAs substrates .............. 89 6.1.1 Examples of Ga(In)As quantum wells on (Al)GaAs ................... 89 6.1.1.1 Examples of GaAs quantum wells on AlGaAs ...................... 90 6.1.1.2 Indirect excitons in GaAs/Al(Ga)As quantum wells ................... 91 6.1.1.3 InGaAs quantum wells in Al(Ga)As ........................... 92 6.1.1.4 GaInNAs(Sb) quantum wells on GaAs .......................... 92 References for 6.1 .................................... 94 6.2 Structuring and growth of quantum wires and nano-rods on GaAs ............ 96 6.2.1 Lithographically defined nanowires on GaAs: top-down approach ............ 96 6.2.2 Cleaved edge overgrowth ................................ 97 6.2.3 Quantum wires formed by growth on pre-patterned substrates .............. 98 6.2.4 Bottom-up grown GaAs and InAs nanowires ...................... 98 References for 6.2 ................................... 100 6.3 Growth and preparation of quantum dots and nano crystals on GaAs substrates .... 102 6.3.1 Self-assembled QDs on GaAs substrate based on In(Al,Ga)As alloys ......... 102 6.3.2 Self-assembled QDs on GaAs substrate based on InGaNAs alloys ........... 105 6.3.3 In(Ga)As quantum dot growth on high-index GaAs substrates ............. 105 6.3.4 Self-assembled QDs on GaAs substrate based on droplet epitaxy ........... 106 6.3.5 Self-assembled QDs on GaAs substrate based on GaAs monolayer fluctuations and submonolayer deposition ............................... 106 6.3.6 Site-controlled QDs on GaAs substrates: the top-down approach ........... 107 6.3.7 Site-controlled (In,Ga)As QDs on GaAs substrates: growth on pre-patterned substrates ....................................... 107 6.3.8 (In,Al,Ga)P quantum dots on GaAs substrates ..................... 109 References for 6.3 ................................... 111 6.4 Growth of group III–nitride compounds for nanostructure device applications ..... 115 6.4.1 The role of substrates ................................. 115 References for 6.4.1 .................................. 117 6.4.2 Different growth techniques .............................. 118 References for 6.4.2 .................................. 119 6.4.3 Group III–nitride quantum wells ............................ 120 References for 6.4.3 .................................. 122