ebook img

Gröbner Bases and the Computation of Group Cohomology PDF

140 Pages·2003·0.76 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gröbner Bases and the Computation of Group Cohomology

1828 Lecture Notes in Mathematics Editors: J.--M.Morel,Cachan F.Takens,Groningen B.Teissier,Paris 3 Berlin Heidelberg NewYork HongKong London Milan Paris Tokyo David J. Green Gro¨bner Bases and the Computation of Group Cohomology 1 3 Author DavidJ.Green FBC-MathematikundNaturwissenschaften BergischeUniversita¨tWuppertal Gaussstr.20 42097Wuppertal Germany e-mail:[email protected] Cataloging-in-PublicationDataappliedfor BibliographicinformationpublishedbyDieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataisavailableintheInternetathttp://dnb.ddb.de MathematicsSubjectClassification(2000):20J06,16S15,16E05,16Z05,20C05,20D15 ISSN0075-8434 ISBN3-540-20339-7Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violationsare liableforprosecutionundertheGermanCopyrightLaw. Springer-VerlagisapartofSpringerScience+BusinessMedia springeronline.com (cid:1)c Springer-VerlagBerlinHeidelberg2003 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readyTEXoutputbytheauthors SPIN:10964583 41/3142/du-543210-Printedonacid-freepaper For Birgit, Thomas and Anne Preface The motivation for this book is the desire to perform complete calculations of cohomology rings in the area called the cohomology of finite groups. The theories presented here belong to that part of computational algebra known as noncommutative Gr¨obner bases. It happens that existing Gro¨bner basis methods perform particularly poorly in the conditions imposed by cohomol- ogy calculations. So new types of Gro¨bner bases had to be developed, in- formed by practical computability considerations. Thanks to the work of J. F. Carlson, one can compute the cohomology ring of a p-group from a sufficiently large initial segment of the minimal pro- jective resolution. The first new Gro¨bner basis theory – for modules over the modular group algebra – was developed to construct the minimal resolution as efficiently as possible. In all probability it applies equally well to finite dimensional basic algebras. Carlson’smethodalsoneedstheabilitytomanipulatetherelationsinthe cohomology ring. As such rings are graded commutative rather than strictly commutative,itwasnecessarytodeviseatheoryofGr¨obnerbasesforgraded commutativerings.Thereismorethanonewaytodothis.TheGro¨bnerbases presented here were designed to resemble the classical commutative case as closely as possible. Strictly speaking, they are Gro¨bner bases for right ideals in a more general type of algebra which is here called a Θ-algebra. Many cohomology computations have been performed using these meth- ods. In particular, the essential conjecture of Mui and Marx was shown to be false. The counterexample is the Sylow 2-subgroup of U (4), a group of 3 order 64. Acknowledgements I am very grateful to the following people. Jon F. Carlson aroused my interest in the computer calculation of group cohomology. All the big computations described here were performed on his machine toui. Klaus Lux and Peter Dra¨xler drew my attention to the potential of non- commutative Gr¨obner basis methods, and in particular to the work of Ed Green and his collaborators. VIII Preface Prof. G. Michler (who suggested computational cohomology to me as long ago as 1991) allowed me the use of the computers at the Institute for Experimental Mathematics in Essen during the long developmental phase. ThisbookismyWuppertalHabilitationsschrift,withminorupdates.But for the exertions of Erich Ossa and Bjo¨rn Schuster, the number of gram- matical errors in the German original would have been considerably higher. Wuppertal, August 2003 David J. Green Table of Contents Introduction.................................................. 1 Part I Constructing minimal resolutions 1 Bases for finite-dimensional algebras and modules ........ 13 1.1 Finite-dimensional algebras .............................. 14 1.2 Free right modules...................................... 16 1.3 Implementation ........................................ 17 1.4 The matrix of a general element.......................... 17 1.5 The Jennings ordering .................................. 18 2 The Buchberger Algorithm for modules .................. 21 2.1 The Diamond Lemma for modules........................ 22 2.1.1 Reduction systems................................ 22 2.1.2 Ambiguities and the Diamond Lemma .............. 23 2.2 The Buchberger Algorithm .............................. 26 2.3 Implementation ........................................ 29 2.3.1 The algorithm Incorp.............................. 29 2.3.2 The Buchberger Algorithm ........................ 31 3 Constructing minimal resolutions ......................... 33 3.1 The kernel of a homomorphism........................... 33 3.2 Minimal generating sets ................................. 35 3.2.1 Heady reduction systems .......................... 36 3.2.2 Algorithms for heady reduction systems ............. 37 3.3 Implementation ........................................ 39 3.3.1 The variants of the algorithm Incorp ................ 40 3.3.2 The variants of the Buchberger Algorithm ........... 42 3.4 Computing preimages................................... 45 X Table of Contents Part II Cohomology ring structure 4 Gro¨bner bases for graded commutative algebras .......... 49 4.1 The structure of Θ-algebras.............................. 50 4.2 Gro¨bner bases for right ideals ............................ 55 4.2.1 Gro¨bner bases and the Division Algorithm........... 55 4.2.2 The Buchberger Algorithm ........................ 56 4.3 The kernel of an algebra homomorphism .................. 59 4.4 Intersections and Annihilators: Gro¨bner bases for modules ... 62 5 The visible ring structure................................. 67 5.1 Basics................................................. 67 5.2 Practical considerations ................................. 68 5.2.1 Lifts of cocycles .................................. 68 5.2.2 Gro¨bner bases and the visible ring structure ......... 69 5.3 Monomial ordering and generator choice................... 72 5.3.1 Nilpotent generators .............................. 72 5.3.2 Regular generators ............................... 74 5.3.3 In summary ..................................... 74 5.4 Calculating products in batches .......................... 75 5.5 Restriction to subgroups ................................ 79 6 The completeness of the presentation..................... 81 6.1 The Koszul complex .................................... 81 6.2 Carlson’s completeness criterion .......................... 83 6.3 Duflot regular sequences................................. 84 6.4 Groups of small rank: Koszul complex and Poincar´e series ... 86 6.5 Identifying subgroups ................................... 89 Part III Experimental results 7 Experimental results...................................... 93 7.1 Cohomology rings of small p-groups....................... 93 7.1.1 The groups of order 81............................ 95 7.1.2 The groups of order 625........................... 96 7.1.3 Two essential classes with nonzero product .......... 96 7.1.4 A 3-group with Cohen–Macaulay defect 2 ........... 98 7.2 Resolutions for larger p-groups ........................... 99 7.3 The period of a periodic module.......................... 100 Table of Contents XI A Sample cohomology calculations .......................... 101 A.1 The cyclic group of order 2 .............................. 101 A.2 The cyclic group of order 4 .............................. 101 A.3 The Klein 4-group ...................................... 101 A.4 The dihedral group of order 8 ............................ 102 A.5 The quaternion group of order 8.......................... 103 A.6 The Sylow 2-subgroup of U (4)........................... 105 3 A.7 The Sylow 3-subgroup of A ............................. 123 9 A.8 Small Group No. 16 of order 243 ......................... 126 Epilogue...................................................... 131 References.................................................... 133 Index......................................................... 137

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.