Lecture Notes in Physics 938 Tom Rother Green’s Functions in Classical Physics Lecture Notes in Physics Volume 938 FoundingEditors W.Beiglböck J.Ehlers K.Hepp H.Weidenmüller EditorialBoard M.Bartelmann,Heidelberg,Germany P.Hänggi,Augsburg,Germany M.Hjorth-Jensen,Oslo,Norway R.A.L.Jones,Sheffield,UK M.Lewenstein,Barcelona,Spain H.vonLöhneysen,Karlsruhe,Germany A.Rubio,Hamburg,Germany M.Salmhofer,Heidelberg,Germany W.Schleich,Ulm,Germany S.Theisen,Potsdam,Germany D.Vollhardt,Augsburg,Germany J.D.Wells,AnnArbor,USA G.P.Zank,Huntsville,USA The Lecture Notes in Physics The series Lecture Notes in Physics (LNP), founded in 1969, reports new devel- opmentsin physicsresearch and teaching-quicklyand informally,but with a high qualityand the explicitaim to summarizeand communicatecurrentknowledgein anaccessibleway.Bookspublishedinthisseriesareconceivedasbridgingmaterial between advanced graduate textbooks and the forefront of research and to serve threepurposes: (cid:129) to be a compact and modern up-to-date source of reference on a well-defined topic (cid:129) to serve as an accessible introduction to the field to postgraduate students and nonspecialistresearchersfromrelatedareas (cid:129) to be a source of advanced teaching material for specialized seminars, courses andschools Bothmonographsandmulti-authorvolumeswillbeconsideredforpublication. Editedvolumesshould,however,consistofaverylimitednumberofcontributions only.ProceedingswillnotbeconsideredforLNP. VolumespublishedinLNParedisseminatedbothinprintandinelectronicfor- mats,theelectronicarchivebeingavailableatspringerlink.com.Theseriescontent isindexed,abstractedandreferencedbymanyabstractingandinformationservices, bibliographicnetworks,subscriptionagencies,librarynetworks,andconsortia. Proposalsshouldbe sent to a memberof the EditorialBoard, ordirectly to the managingeditoratSpringer: ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] Moreinformationaboutthisseriesathttp://www.springer.com/series/5304 Tom Rother Green’s Functions in Classical Physics 123 TomRother GermanAerospaceCenter Neustrelitz,Germany ISSN0075-8450 ISSN1616-6361 (electronic) LectureNotesinPhysics ISBN978-3-319-52436-8 ISBN978-3-319-52437-5 (eBook) DOI10.1007/978-3-319-52437-5 LibraryofCongressControlNumber:2017937574 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland ThemillwhereGeorgeGreenlivedanddiedin1841.TodayitisapartoftheGreen’sWindmill andScienceCentreinNottingham,UK Preface This book is singing the praises of Green’s functions. Its concept was formed a couple of years ago, after finishing a consistent Green’s function formulation of electromagnetic wave scattering on nonspherical objects. It turned out that such a consistent Green’s function formulationprovidesa sound mathematicalbasis to discusstheadvantagesanddisadvantagesofdifferentnumericalapproacheswhich havebeendevelopedsofartosolvethosescatteringproblems.ButIbecamealready acquaintedwith similar mathematicalstructuresduringmy earlyPhD activitiesin the field of quantum statistics. This long-lasting activity with Green’s functions led me to the issue of the conceptual importance of these functions for physics, in general. Unfortunately, even today Green’s functions are often considered and discussed only from the point of view of an appropriate mathematical tool for solving differentialequations.The works of J. Schwingerand F. Dyson belongto thefew exceptionswhichemphasizetheconceptualimportanceofthese functions inquantumstatisticsandquantumfieldtheory. Startingfromtheseexperiencesandfirstbutmorephilosophicalconsiderations— where the latter are reflected in the prologue of this book—I tried to apply the Green’sfunctionformalismto well-knownproblemsof classical physics,someof whichareusuallysolvednotbythisformalismbutothermethods.Thisactivitywas aimed at convincingmyself from the conceptual importance of Green’s functions alsoinclassicalfieldsofphysics.Thepresentbookistheresultofthiseffort.Itis writtenasanintroductionforthosewhowanttobecomemorefamiliarwithGreen’s functions and their importance and usage in classical physics. However, a short outlook regarding the importance of Green’s functions in quantum mechanics as wellastheircalculationbyuseofthemethodsdiscussedintheforegoingchapters is providedin the finalchapterof this book.Lookingat physicsfrom the pointof view formulatedin the prologueprovedto be very helpfulfor me when I tried to enter new fields of physics. Maybe the reader will also benefit from this point of view. Finally, I would like to express my deepest gratitude to my parents Elisabeth andFritzRother,tomywifeDoreenandtomyteacherProf.Wolf-DietrichKraeft for their support in manyfold ways and their continuous interest in my scientific vii viii Preface activitiesoverdecades.SpecialthanksgoalsotoMr.J.Duff,heritagedevelopment officer from the Green’s Windmill and Science Centre, Nottingham (UK), for providingmewiththecoverpictureofGreen’swindmill.Iwouldalsoliketothank Dr. C. Ascheron, senior editor at Springer Science and Business Media, for his continuousinterestandassistanceinpublishingthisbook. Neustrelitz,Germany TomRother Autumn,2016 Contents 1 Prologue....................................................................... 1 1.1 Aboutthe“State”ofPhysics ........................................... 1 1.2 BasicStructuralElementsofPhysics .................................. 5 1.3 AboutClassicalPhysicsandQuantumMechanics.................... 9 2 Green’sFunctionsofClassicalParticles................................... 15 2.1 TheSimpleHarmonicOscillator....................................... 16 2.1.1 ClassicalConsideration......................................... 16 2.1.2 Green’s Function, Green’s Theorem,Causality, andReciprocity................................................. 19 2.1.3 DeterminationoftheGreen’sFunctionbyTrying ............ 24 2.1.4 DeterminationoftheGreen’sFunctionbyApplying theFourierTransformMethod................................. 27 2.1.5 FirstExamplesofSimpleSources............................. 31 2.2 TheDampedHarmonicOscillator ..................................... 33 2.2.1 DeterminationoftheGreen’sFunctionbyApplying theFourierTransformMethod................................. 35 2.2.2 ThePeriodicallyExcitedDampedHarmonicOscillator...... 36 2.3 BasicMotionsofaPointMass......................................... 39 2.4 Lippmann-SchwingerEquation ........................................ 41 2.5 TwoSystematicWaystoDeriveGreen’sFunctions................... 46 2.5.1 ClassicalMethodtoDeterminetheGreen’sFunctions ....... 47 2.5.2 Alternative Formulation by Using Cauchy’s IntegralFormula................................................ 55 2.5.3 Kramers-KronigRelation ...................................... 60 2.6 TemporalBoundaryValueProblemoftheHarmonicOscillator ..... 64 2.7 TwoSimpleInteractionProcessesandHuygens’Principle........... 72 2.7.1 InteractionwithaWall ......................................... 73 2.7.2 TemporaryFriction ............................................. 77 ix x Contents 2.8 ParticleScatteringonaRigidSphereandKeplerProblem ........... 78 2.8.1 TransformationoftheEquationofMotionintoPolar Coordinates ..................................................... 78 2.8.2 SourcesoftheScatteringProblems............................ 80 2.8.3 SolvingtheScatteringProblems............................... 83 3 Green’sFunctionsofClassicalFields...................................... 95 3.1 CommentsontheFieldConcept ....................................... 95 3.2 TheElasticString....................................................... 97 3.2.1 One-DimensionalPoissonEquation........................... 98 3.2.2 One-DimensionalWave-,Klein-Gordon-,Telegraphy-, andDiffusionEquation......................................... 103 3.2.3 Reciprocity and General Solution oftheOne-DimensionalWaveEquation....................... 111 3.2.4 ExamplesofSimpleSources................................... 114 3.2.5 Reflectionofd’Alembert’sSolutionFrom aFixedBoundary............................................... 117 3.2.6 ReflectionandTransmissionofd’Alembert’sSolution ataDiscontinuity............................................... 123 3.3 PoissonEquationsofHigherDimensions ............................. 125 3.3.1 Dirac’s Delta Function and Unit Sources inPolar-andSphericalCoordinates ........................... 126 3.3.2 Green’sFunctionoftheTwo-Dimensional PoissonEquation ............................................... 128 3.3.3 Green’sFunctionoftheThree-DimensionalPoisson Equation......................................................... 129 3.4 WaveEquationsofHigherDimensions................................ 131 3.4.1 Three-DimensionalWaveEquation............................ 133 3.4.2 Two-DimensionalWaveEquation ............................. 134 3.4.3 FourierTransformMethodinInfiniteRegions................ 135 3.4.4 FourierTransformMethodinFiniteRegions ................. 138 3.5 TheScalarHelmholtzEquation........................................ 141 3.5.1 Green’sFunctionsoftheOne-DimensionalHelmholtz Equation......................................................... 141 3.5.2 Green’sFunctionsoftheTwo-andThree-Dimensional HelmholtzEquation ............................................ 145 4 Green’sFunctionsandPlaneWaveScattering ........................... 149 4.1 GeneralAspects......................................................... 149 4.2 Double-SlitExperiments................................................ 156 4.2.1 ClassicalDouble-SlitExperiment.............................. 156 4.2.2 InteractionofaLinearlyPolarizedPlaneWavewitha PolarizingFilter................................................. 163 4.2.3 ModifiedDouble-SlitExperiment ............................. 170 4.3 EigensolutionsoftheThree-DimensionalHelmholtzEquation inSphericalCoordinates................................................ 172