Gravity Interpretation · Wolfgang Jacoby Peter L. Smilde Gravity Interpretation Fundamentals and Application of Gravity Inversion and Geological Interpretation WithCD-ROM 1 3 Prof.Dr.WolfgangJacoby Dr.PeterL.Smilde Johannes FintherStr.6 Gutenberg-Universita¨tMainz 55257Budenheim Institutfu¨rGeowissenschaften Germany Saarstr.21 [email protected] 55099Mainz Germany [email protected] ISBN:978-3-540-85328-2 e-ISBN:978-3-540-85329-9 LibraryofCongressControlNumber:2008934054 (cid:2)c Springer-VerlagBerlinHeidelberg2009 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:deblik,Berlin Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Preface Gravityinterpretationinvolvesinversionofdataintomodels,butitismore.Gravity interpretation is used in a “holistic” sense going beyond “inversion”. Inversion is like optimization within certain a priori assumptions, i.e., all anticipated models lie in a limited domain of the a priori errors. No source should exist outside the anticipatedmodelvolume,butthatisneverliterallytrue.Interpretationgoesbeyond by taking “outside” possibilities into account in the widest sense. Any neglected possibilitycarriesthedangerofseriouslyaffectingtheinterpretation. GravityinterpretationpertainstowiderquestionssuchastheshapeoftheEarth, thenatureofthecontinentalandoceaniccrust,isostasy,forcesandstresses,geolog- ical structure, finding useful resources, climate change, etc. Interpretation is often used synonymously with modelling and inversion of observations toward models. Interpretation places the inversion results into the wider geological or economic contextandintotheframeworkofscienceandhumanity.Modelsplayacentralrole inscience.Theyareimagesofphenomenaofthephysicalworld,forexample,scale images or metaphors, enabling the human mind to describe observations and rela- tionships by abstract mathematical means. Models served orientation and survival inacomplex,partlyinvisiblephysicalandsocialenvironment. Inversionofgravityanomaliesisthemathematicalderivationofdensitydistribu- tions and their confidence limits. This is a notoriously non-unique problem, while thesocalledforwardproblemoffindingthegravityeffectsofgivenmassdistribu- tions is perfectly unique. The ambiguity of inversion simply results from the fact that knowledge of a sum does not imply knowledge of the addends. If you know c=a+b, but nothing about a and b, c reveals neither a nor b. There is always aninfinitemodelspace;theinfinityofanswerscanbereducedonlybyinvokinga priori information. It can be of any nature and depends on the problem at hand. If forexampleb=2a,yougeta=c/3andb=2c/3. Thistreatiseattemptstogiveaperspectiveoftheproblemandtopreparereaders forfindingtheirwaytosolutions.Aprioriinformationiscentraltogravityinversion. It ranges from “hard” geological and geophysical data, such as seismic results, to generalideasbasedonexperienceandtomodelsofprocesseswhichwouldproduce gravitysignals.Generallytheadditionalknowledgewillbelimited,butoftenvery importantaspectswillberevealed.Iftheaprioriinformationwerecomplete,there wouldbenoproblemlefttobesolved. v vi Preface This touches the question: what does gravity tell and what not? To endeavour alongtheselinesistheexcitingbusinessofapproachingthetruth,butonecannever beabsolutelysure.Naturehasbuiltintoomanyobstacles.Ifgravityismeasuredon orabovetheEarth’ssurface,onecannottrulylookinside.Thesignalscomelargely fromwithin,though.Thereisaphilosophicalextensionoftheseideasaboutgravity interpretation:inourgeneralintellectualhumanconditionweareinaverysimilar situation concerning our world views including that of ourselves. We observe and receivesignalsfromwithinandwithout,andwecommunicate.Webuildourvirtual worldsthatshouldbeconsistent.Thisaimfeedsbackintoourapproachtogravity interpretation. TextsofAppliedGeophysicsgenerallyhavean“explorationoutlook”;thepresent book has also a strong geodynamic “inclination”. Gravity is active and passive: a force doing work toward equilibrium from a disturbed state and generating a field withobservablesignalstobeinterpreted.Inmanygeologicalsituationsgravityhas doneworkandwetrytofindoutwhathappened.Forexample,avalleyhasbeenex- cavatedandrefilledbylower-densitysediments,givinganegativegravityanomaly. Or hot, low-density mass has risen or is rising, and cold, high-density mass has sunk or is sinking and working against viscous forces and deflecting density sur- facesfromtheirequilibriumlevel.Thedensitydistributionsgeneratedgivegravity signals which can be interpreted only in view of such model ideas. Without them, modelsofatotallydifferentnaturecan“explain”theanomalies. This situation causes confusion. Is it worth at all to interpret gravity? Some seem to think: not. This view is definitively wrong. Gravity plays two fundamen- tallyusefulrolesintheearthsciences:ithelpstoinexpensivelydetect“anomalies” worthstudying,anditfalsifiesandeliminatesmodelsbyforwardcomputations.The methodologicalsideisthetheoryandpracticeofdatagathering,forwardmodelling andofBayesianinversion,includingthevariouspreliminarystepsofmeasurement anddatapreparation.Thepracticalsideisthepresentationofapplicationsandcase histories.Thephilosophicalsideisthatitwantstoteachgeneralaspectsofapplying observationstoscienceandtolife. Presentationofobservationaltechniquesiskepttoaminimum,butsomediscus- sion is unavoidable. Gravity or geoid observations are affected by errors or confi- dence limits. Errors have an important effect on what can be learnt from gravity, so their discussion is carried through all chapters. With the development of new methods of terrestrial, marine, airborne and satellite-based observational methods, andwithincreasingaccuracyoftheobservationsthescopeofinterpretationwidens. Many methods of forward calculation of gravity effects are well known and refer- enceisgiventoothertexts;butsomeaspectsofthebasicapproachinthistreatise arenovel. Muchofatextbook isconcerned withthereaderlearningtoworkingeophysi- cal“practice”.Manytoday,especiallyscienceadministratorsonalllevels,suggest thatteachingisthemainfunctionofuniversities,andeffortsin“purescience”and conveyingin-depthunderstandingisnotsoimportant.Thisattitudeisshort-sighted. Only deep understanding will produce reliable results, also in limited exploration projects.Goodself-criticaljudgement,forexampleoftheprobabilityandpossibility Preface vii oferrorsinaninterpretation,requiresknowledgebeyondtechnicalskills.Thisour own experience we wish to share. Indeed, we endeavour to make readers wonder aboutproblems. Probablythebestwayoflearningisfrommistakesandfromindependentefforts in problem solving. We therefore include, as a CD, a collection of tasks or prob- lems with some instructions for how to approach solutions. This will give readers the chance to make their own mistakes and to correct them. Answers are listed at theend,includingdiscussionoftheproblemsandsolutions.Someofthetasksare applicationsofinversion(Chap.7)togeologicalortheoreticalmodellingwhichadd principalaspectsdiscussedatsomelength. Oneofourownexamplesservesasanillustration:whenworkingoutthesolid- anglesolutionforacubeatoneofitscorners(seeSect.2.9.6),theassumptionthat the gravitational vector effect points to the centre of mass led to the surprisingly beautifulresultthattheverticalgravityeffectwouldbeprecisely1/6ofthatofthe infinite Bouguer slab of the same thickness and density. But beauty is no proof, and the result did not stand the test. The mistake was that, contrary to widespread belief, the gravitational vector does not generally point to the centre of mass, ex- ceptincertaincasesofspecialsymmetry(seeSect.2.9.1.2)whichshouldhavebeen immediatelyevident,forexample,fromtheEarth’sellipsoidorthegeoid.Themis- conception arose from a mix-up with mechanics where the action of a force on a bodyisdescribedbyactiononitsbarycentre,i.e.centreofmassorbalancepoint. Theauthorshaveconsultedothertextscoveringthesubject,especiallytheclas- sical book (in German) by Karl Jung (1961), Schwerkraftverfahren in der Ange- wandtenGeophysik(GravitymethodsinAppliedGeophysics;itwillbereferredto asKJ61),andthebookInterpretationTheoryinAppliedGeophysicsbyF.S.Grant andG.F.West(1965)(referredtoasGW65).Manyusefulideashavebeentakenup andpartlyexpanded.Inthoseearlydaysofcomputingmachinestheirpossibilities hadbeenclearlyseenandthefoundationshadbeenlaiddownfortheirapplication. One of the authors (WJ) studied physics, geophysics and more and more geol- ogy and considers himself a geophysically guided geologist, interested in how the Earth works and concerned about how mankind treats its home planet. The other author(PS)studiedgeodesyandbecamemoreandmoreinvolvedingeophysicsand geology when working with WJ on his PhD thesis on gravity inversion, develop- ingtheprogrampackageINVERT,ofwhichanexecutablecopyisattachedtothis book on a CD. The thesis is also the basis of the most important last chapter of the book on optimization and inversion. The cooperation led to a synthesis of the geological-geophysicalapproachtotheproblemsofinterpretationandthegeodetic, moremathematicallyinclinedapproach.Itisthecombinationofgeologicalimagi- nationandexperience,ontheonehand,andabstractgeophysical-mathematicalrea- soning, on the other, that is the basis of Earth science. Experience-based intuition mustbecheckedbymathematicalvalidation.Indeed,scienceissuspendedbetween the two extremes of freedom of thinking and rigorous checking. Scientists surely endeavourtoapproachthetruthinsuchsuspense. Many colleagues and friends in various institutions, not only from our own study field, have participated in teaching us this lesson, from our parents, families viii Preface and some school teachers to our academic teachers, Karl Jung†, Kiel, and Reiner Rummel, Delft, and to our later colleagues and students. Every one of them has chosen her/his own way and none is responsible for ours, but the – hopefully – mutual benefit has been immense. The intellectual challenges by colleagues and studentsaregratefullyacknowledged.GeologicalteachingbyEugenSeybold,Kiel, andexchangewithRichardWalcott,RichardGibb,AlanGoodacreandImreNagy inCanadaandwithGerhardMu¨ller†,Frankfurt(Main),wereimportant.InMainz, Georg Bu¨chel, Evariste Sebazungu, Tanya Fedorova, Ina Mu¨ller, Chris Moos, Michaela Bock, Herbert Wallner, Hasan C¸avs¸ak, Tanya Smaglichenko and many otherswereinfluentialonbothofus. HerbertWallnerhelpedintellectuallybymanydiscussions,withcalculationsand quite a number of figures. Tanya Fedorova provided some of the gravity inversion models. Evariste Sebazungu, in his own PhD thesis on potential field inversion, developed original ideas which entered into this treatise. Hasan C¸avs¸ak provided gravitycalculationsforvariouspolyhedralbodiesandhelpeddiscoveringerrorsin some theoretical derivations. Pierre Keating provided information on some of the freemodellingsoftware.DiscussionswithMarkusKrieger(Terrasys,Hamburg)led toseveralideasandinsightsintothepracticalsolutionofinterpretationproblems. All of them and many more contributed thought-provoking ideas and thus in- fluencedthepresenttreatise.Mostimportantly,themutualdiscussionsbetweenthe authorsthroughthewholetimeoftheircooperationwerebeneficialtoboth.Finally, lecturingongravity(andmagnetics)taughtusmorethananythingelsetoendeavour topresenttheideasclearly. Petra Sigl was always helpful and did an excellent job in preparing most of the figures in this book. The book could hardly have been completed without the manyformsofsupportbytheInstitutfu¨rGeowissenschaften,JohannesGutenberg- Universita¨t Mainz, various grants by Deutsche Forschungsgemeinschaft, Bonn, and by Stiftung Rheinland-Pfalz fu¨r Innovation, Mainz, the Terrasys company, Hamburg. Bettie Higgs, Stefan Bu¨rger, Herbert Wallner, Mark Pilkington, Pierre Keating critically proofread parts of the draft and partly checked the mathematics. The re- sponsibilityforanyerrorsremains,however,exclusivelywiththeauthors.Allhelp bypersonsandinstitutionsisgratefullyacknowledged,includingthemanythatare notnamed. Mainz,Germany WolfgangJacoby PeterL.Smilde Contents 1 Introduction................................................... 1 1.1 TheSubjectandScope ...................................... 1 1.1.1 Gravity............................................. 1 1.1.2 Motivation.......................................... 2 1.1.3 Aims .............................................. 3 1.1.4 SpecialAspects...................................... 4 1.1.5 TheBookandtheReader ............................. 4 1.2 HistoricalReview .......................................... 5 1.2.1 Astronomy,Geodesy,Geophysics,18thand19thCenturies . 5 1.2.2 20thCentury ........................................ 6 1.2.3 GeodesyandGeophysics.............................. 7 1.3 PurposesofGravityMeasurements............................ 8 1.4 GravityandGravityAnomalies............................... 9 1.5 Some Important Aspects of the Terrestrial Gravity Field and InternalMassDistribution ................................... 10 1.5.1 GeneralConsiderations ............................... 10 1.5.2 TheEarth’sFigureandConstitution..................... 11 1.5.3 ContinentsandOceans................................ 12 1.5.4 PlateTectonicsandMantleFlow ....................... 13 1.5.5 AssociatedGravityAnomalies ......................... 16 1.5.6 OtherLarge-ScaleGravityFeatures..................... 18 1.5.7 Smaller-ScaleGravityAnomaliesRelevanttoExploration forEconomicMinerals ............................... 19 1.5.8 HarmonicSpectrumoftheGravityField................. 19 References..................................................... 21 2 FundamentalsofGravity,ElementsofPotentialTheory ............ 23 2.1 Introduction ............................................... 23 2.2 Units ..................................................... 23 2.3 Elementsofg.............................................. 24 2.4 CoordinateSystems ........................................ 25 ix x Contents 2.4.1 SphericalCoordinates ................................ 25 2.4.2 VerticalCylinderCoordinates.......................... 26 2.4.3 CartesianCoordinates ................................ 27 2.5 Newton’s Laws: Gravitation and Inertia Plus Centrifugal Acceleration=Gravity...................................... 29 2.6 GravityPotentialandEquipotentialSurfaces.................... 31 2.7 Laplace Equation, Field Quantities, Equivalent Stratum; DerivationofSomeFieldQuantities,SurfaceIntegrals,Poisson Equations,GravitationalFluxΓ............................... 34 2.7.1 Source-FreeSpace:LaplaceEquation ................... 35 2.7.2 TheFieldQuantities.................................. 36 2.7.3 TheEquivalentStratum ............................... 39 2.7.4 Applications:EstimationofFieldQuantitiesasδW ,δW , x y δW .............................................. 40 zzz 2.7.5 SourceSpace:PoissonEquationandGravitationalFluxΓ .. 43 2.7.6 SurfaceIntegrals:TotalMass,CentreofMass ............ 44 2.8 TheGravityTensor(Eo¨tvo¨sTensor) ........................... 45 2.9 GravityEffectsandAnomalies–SummationandIntegration ...... 46 2.9.1 GeneralConsiderations ............................... 46 2.9.2 CoordinateSystemsandIntegration..................... 50 2.9.3 Special Mass Elements: Integration in One and Two Dimensions,MassLinesandMassPlanes................ 53 2.9.4 Disks .............................................. 61 2.9.5 Shells.............................................. 67 2.9.6 UniformMassiveVolumes ............................ 70 2.9.7 Two-DimensionalBodies ............................. 74 2.9.8 Two-and-a-halfDimensionalModels(21D).............. 84 2 2.10 SomeTheoreticalAspectsofAnomalyAnalysis................. 86 2.10.1 GoalsofPost-reductionDataAnalysis .................. 86 2.10.2 SmoothingofSpatialSeries ........................... 87 2.10.3 Polynomials ........................................ 88 2.10.4 TheFieldQuantities:DifferentiationandIntegration....... 89 2.10.5 HarmonicFunctions.................................. 90 2.10.6 SpecialFunctions .................................... 94 2.10.7 SphericalHarmonics ................................. 99 2.10.8 Wavelets ...........................................103 2.10.9 StochasticRepresentationofAnomalies .................104 2.11 AspectsofMagnetostatics ...................................105 References.....................................................110 3 ObservationsandFieldActivities ................................113 3.1 Introduction ...............................................113 3.2 PrinciplesofGravityMeasurementandInstrumentTypes.........114 3.2.1 GeneralConsiderations ...............................114 3.2.2 Pendulums..........................................115
Description: