ebook img

Gravity, Black Holes, and the Very Early Universe: An Introduction to General Relativity and Cosmology PDF

284 Pages·2008·4.91 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gravity, Black Holes, and the Very Early Universe: An Introduction to General Relativity and Cosmology

Gravity, Black Holes, and the Very Early Universe Tai L. Chow Author Gravity, Black Holes, and the Very Early Universe An Introduction to General Relativity and Cosmology TaiL.Chow CaliforniaStateUniversityStanislaus Turlock,CA USA ISBN-13:978-0-387-73629-7 e-ISBN-13:978-0-387-73631-0 LibraryofCongressControlNumber:2007936678 (cid:1)c 2008SpringerScience+BusinessMedia,LLC Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper. 9 8 7 6 5 4 3 2 1 springer.com DedicatedtoMyWife SylviaHsiuYungChen About the Author Dr. Tai Chow was born and raised in China. He received a Bachelor of Science degree in physics from National Taiwan University, a Master’s degree in physics from Case Western Reserve University in Cleveland, and a Ph.D. in physics from the University of Rochester in New York. Since 1970, Dr. Chow has been in the Department of Physics at California State University, Stanislaus, and served as department chairman for 17 years. He has also served as a Visiting Professor at the University of California at Davis and Berkeley and has worked as a Summer Faculty Fellow at Stanford University and at NASA/Ames Center. Dr. Chow has publishedover40articlesinphysicsandastrophysicsjournalsandistheauthorof three textbooks: Classical Mechanics, published in 1995 by John Wiley & Sons, MathematicalMethodsforPhysicists,in2000byCambridgeUniversityPress,and IntroductiontoElectromagneticTheory,in2005byJones&BartlettPublishers. vii Preface Intheearly1900s,threeeventstookplacethatdramaticallychangedthecourseof modern physics. In 1905 Albert Einstein formulated the Special Theory of Rela- tivity. Then, in 1915, he developed the General Theory of Relativity, and around 1925quantummechanicstookitspresentform.Sincethen,physicshasprogressed rapidly. Beginning in 1930, quantum mechanics and special relativity were united into what is known as the relativistic quantum field theory. This merger was very rewardinginthatitprovides,attheleast,partialexplanationofthelawsandinter- actionsgoverningelementaryparticlephysics. Amongthefourtypesofforces(strong,electromagnetic,weak,andgravitational) knowntoday,gravityisperhapsthestrangest.Weakthoughitis,gravitydominates theotherthreeforcesovercosmicdistances.Anycosmologymustbefoundedona logicallysecuretheoryofgravitation. Thefirstthreeforcescouldbeexplainedthroughparticleinteractionstakingplace intheflatspace-timeofspecialrelativity.However,gravitydefiessuchanexplana- tion. In order to describe the mysterious force known as gravity, Einstein in 1915 wascompelledtogeneralizetheideasofhisspecialrelativity,andheeventuallycon- nectedgravitywiththegeometryofspace-time.Inotherwords,Einstein’sGeneral TheoryofRelativityisarelativistictheoryofgravitation. For a long time, Einstein’s Theory of General Relativity occupied an isolated position within the domain of general physics. This was attributable in part to the mathematicalframeworkofthetheory,whichisbasedonRiemanniangeometry,a kindofgeometrynotneededinmostotherphysicalapplications.Theextremedif- ficultyindevisingsuitableexperimentsthatmightverifythetheoryandthegrowth ofmorefertilefieldsofinvestigation,suchasatomicandnuclearphysicsaswellas thestudyofelementaryparticles,alsocontributedtotheisolationofthetheory. However, Einstein’s Theory of General Relativity is now enjoying renewed interest. This is due partly to the development of new technological capabilities thatopeneduppreviouslyinaccessibleavenuesfortheexperimentalverificationof general relativity and partly to the conjecture of some theoretical physicists that the fundamental difficulties confronting quantum field theory may find their reso- lutioninasuitablecombinationofthetwodisciplines.Thediscoveryofextremely ix x Preface compactcelestialobjects—neutronstarsandblackholes,forinstance—providedthe finalturningpoint.ThestudyoftheseobjectsdemandedtheapplicationofEinstein’s Theory of General Relativity. Today, physics and astronomy have joined forces to formthedisciplinecalledrelativisticastrophysics.Einstein’sTheoryofGeneralRel- ativityisalsoessentialtomoderncosmology,sincetheoverallspace-timestructure isintimatelyrelatedtothegravitationalfield.Inthepastdecadeinterestincosmol- ogyandgeneralrelativityhasgrownconsiderably. Today,thereisincreaseddemandforundergraduatecoursesinrelativityandcos- mology. There are many advanced books on the Theory of General Relativity and cosmology for the specialist, and many elementary expositions for the lay reader. Butthereisagapattheundergraduatelevel.Thisbookisanattempttofillthegap. Wewilltrytomakeavailabletothestudentaworkingacquaintancewiththecon- cepts and fundamental ideas in general relativity and modern cosmology. For the modes of calculation we choose the old-fashioned tensor calculus for pedagogical reasons.Mostundergraduateshavenotbeenexposedtothemanynewformalisms developed in general relativity. Hopefully after reading this book, the student can continue delving more deeply intoparticular aspects or topics ingeneral relativity andcosmologythatinteresthimorher. ThisbookevolvedfromasetoflecturenotesforacoursethatIhavetaughtover thepast10years.Iammakingtheassumptionthatthestudenthasbeenexposedto a calculus-based course in general physics and a course in calculus (including the handling of differentiations of field equations). Some exposure to tensor analysis wouldbehelpfulbutisnotnecessary;thissubjectiscoveredinthetext. Thestudentwillfindthatinthederivationsofequations,agenerousamountof detailhasbeengiven.However,toensurethatthestudentdoesnotlosesightofthe developmentunderway,someofthemorelengthyandtediousalgebraicmanipula- tionshavebeenomitted. Turlock,California TaiL.Chow,Ph.D. Contents AbouttheAuthor .................................................. vii Preface............................................................ ix 1 BasicIdeasofGeneralRelativity................................. 1 1.1 InadequacyofSpecialRelativity.............................. 1 1.2 Einstein’sPrincipleofEquivalence............................ 3 1.3 ImmediateConsequencesofthePrincipleofEquivalence ......... 7 1.3.1 TheBendingofaLightBeam.......................... 7 1.3.2 GravitationalShiftofSpectralLines (GravitationalRedshift)............................... 8 1.4 TheCurvedSpace-TimeConcept ............................. 8 1.5 ThePrincipleofGeneralCovariance .......................... 12 1.6 DistanceandTimeIntervals.................................. 13 1.7 Problems ................................................. 15 References..................................................... 17 2 CurvilinearCoordinatesandGeneralTensors..................... 19 2.1 CurvilinearCoordinates ..................................... 19 2.2 ParallelDisplacementandCovariantDifferentiation ............. 23 2.3 SymmetryPropertiesoftheChristoffelSymbols................. 27 2.4 ChristoffelSymbolsandtheMetricTensor ..................... 28 2.5 Geodesics................................................. 29 2.6 TheStationaryPropertyofGeodesics.......................... 30 2.7 TheCurvatureTensor ....................................... 32 2.8 TheConditionforFlatSpace................................. 36 2.9 GeodesicDeviation......................................... 37 2.10 LawsofPhysicsinCurvedSpaces ............................ 38 2.11 TheMetricTensorandtheClassicalGravitationalPotential ....... 39 2.12 SomeUsefulCalculationTools ............................... 40 2.13 Problems ................................................. 43 References..................................................... 44 xi xii Contents 3 Einstein’sLawofGravitation.................................... 45 3.1 Introduction(SummaryofGeneralPrinciples) .................. 45 3.2 AHeuristicDerivationofEinstein’sEquations .................. 46 3.2.1 VacuumFieldEquations .............................. 46 3.2.2 FieldEquationsWhereMatterisPresentinSpace......... 48 3.3 Energy-MomentumTensor................................... 51 3.4 GravitationalRadiation...................................... 52 3.5 Problems ................................................. 54 References..................................................... 54 4 TheSchwarzschildSolution ..................................... 55 4.1 TheSchwarzschildMetric ................................... 55 4.2 TheSchwarzschildSolutionoftheVacuumFieldEquations....... 56 4.3 SchwarzschildGeodesics .................................... 60 4.4 QuasiuniformGravitationalField ............................. 62 4.5 Problems ................................................. 63 References..................................................... 63 5 ExperimentalTestsofEinstein’sTheory .......................... 65 5.1 PrecessionofthePerihelionofMercury........................ 65 5.2 DeflectionofLightRaysinaGravitationalField ................ 71 5.3 LightRetardation(TheShapiroExperiment).................... 75 5.4 TestofGravitationalRadiation(Hulse-Taylor’sMeasurement oftheOrbitalDecayoftheBinaryPulsarPSR-1913+16) ......... 77 5.5 Problems ................................................. 79 References..................................................... 79 6 ThePhysicsofBlackHoles ...................................... 81 6.1 TheSchwarzschildBlackHole ............................... 81 6.2 InsideaBlackHole......................................... 84 6.3 HowaBlackHoleMayForm ................................ 86 6.4 TheKerr-NewmanBlackHole ............................... 89 6.4.1 Energy Extraction from a Rotating Black Hole: ThePenroseProcess.................................. 92 6.4.2 TheAreaTheorem ................................... 93 6.4.3 EnergyExtractionfromTwoCoalescingBlackHoles...... 94 6.5 ThermodynamicsofBlackHoles ............................. 95 6.6 QuantumMechanicsofBlackHoles:HawkingRadiation ......... 97 6.7 TheDetectionofBlackHoles ................................101 6.7.1 DetectionofStellar-MassBlackHoles ..................101 6.7.2 SupermassiveBlackHolesintheCentersofGalaxies......104 6.7.3 Intermediate-MassBlackHoles ........................106 6.8 HowDoElectricalandGravitationalFields GetOutofBlackHoles?.....................................106 6.9 BlackHolesandParticlePhysics..............................107 6.10 Problems .................................................108 References.....................................................109 Contents xiii 7 IntroductiontoCosmology ......................................111 7.1 Introduction ...............................................111 7.2 TheDevelopmentofWesternCosmologicalConcepts ............112 7.2.1 AncientGreece......................................112 7.2.2 TheRenaissanceofCosmology ........................113 7.2.3 NewtonandtheInfiniteUniverse .......................114 7.2.4 Newton’sLawofGravityandaNonstationaryUniverse....115 7.2.5 Olbers’Paradox .....................................118 7.3 TheDiscoveryoftheExpansionoftheUniverse.................119 7.4 TheBigBang..............................................123 7.5 TheMicrowaveBackgroundRadiation.........................124 7.6 AdditionalEvidencefortheBigBang .........................128 7.7 Problems .................................................130 References.....................................................131 8 BigBangModels...............................................133 8.1 TheCosmicFluidandFundamentalObservers ..................133 8.2 PropertiesoftheRobertson-WalkerMetric .....................135 8.3 CosmicDynamicsandFriedmann’sEquations ..................139 8.4 TheSolutionsofFriedmann’sEquations .......................142 8.4.1 FlatModel(k =0)...................................143 8.4.2 ClosedModel(k =1) ................................144 8.4.3 OpenModel(k =−1)................................146 8.5 DarkMatterandtheFateoftheUniverse.......................148 8.6 TheBeginning,theEnd,andTime’sArrow.....................152 8.7 AnAcceleratingUniverse?...................................156 8.8 TheCosmologicalConstant..................................158 8.9 Problems .................................................161 References.....................................................161 9 Particles,Forces,andUnificationofForces........................163 9.1 Particles ..................................................163 9.1.1 Spin ...............................................163 9.1.2 Fermions ...........................................164 9.1.3 Bosons.............................................165 9.1.4 HadronsandLeptons .................................165 9.1.5 Quarks .............................................167 9.1.6 QuarkColors........................................168 9.1.7 QuarkConfinement ..................................169 9.2 FundamentalInteractionsandConservationLaws ...............171 9.3 SpontaneousSymmetryBreaking .............................177 9.4 UnificationofForces(Interactions)............................180 9.5 TheNegativeVacuumPressure ...............................184 References.....................................................186

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.