ebook img

Global stability of steady states in the classical Stefan problem PDF

0.22 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Global stability of steady states in the classical Stefan problem

GLOBAL STABILITY OF STEADY STATES IN THE CLASSICAL STEFAN PROBLEM MAHIRHADZˇIC´ ANDSTEVESHKOLLER ABSTRACT. Theclassicalone-phaseStefanproblem(withoutsurfacetension)allowsforacontinuumofsteadystatesolu- tions,givenbyanarbitrary(butsufficientlysmooth)domaintogetherwithzerotemperature.Weproveglobal-in-timestability ofsuchsteadystates,assumingasufficientdegreeofsmoothnessontheinitialdomain,butwithoutanyapriorirestriction 5 ontheconvexitypropertiesoftheinitialshape. Thisisanextensionofourpreviousresult[28]inwhichwestudiednearly 1 sphericalshapes. 0 2 n a J 2 1. INTRODUCTION 1.1. The problem formulation. We consider the problem of global existence and asymptotic stability of classical ] P solutionstotheclassicalStefanproblem,whichmodelstheevolutionofthetime-dependentphaseboundarybetween A liquidandsolidphases. Thetemperaturep(t,x)oftheliquidandtheaprioriunknownmovingphaseboundaryΓ(t) . mustsatisfythefollowingsystemofequations: h t a p ∆p=0 in Ω(t); (1.1a) t m − (Γ(t))= ∂ p on Γ(t); (1.1b) n [ V − p=0 on Γ(t); (1.1c) 1 p(0, )=p ,Ω(0)=Ω. (1.1d) v 0 · 3 6 Foreachinstantoftimet [0,T],Ω(t)isatime-dependentopensubsetofRd withd 2,andΓ(t)d=ef∂Ω(t)denotes 4 ∈ ≥ themoving,time-dependentfree-boundary. 0 Theheatequation(1.1a)modelsthermaldiffusioninthebulkΩ(t)withthermaldiffusivitysetto1. Theboundary 0 . transportequation(1.1b)statesthateachpointonthemovingboundaryistransportedwithnormalvelocityequalto 1 ∂ p= p n,thenormalderivativeofponΓ(t). Here,n(t, )denotestheoutwardpointingunitnormaltoΓ(t), 0 − n −∇ · · and (Γ(t))denotesthespeedorthenormalvelocityofthehypersurfaceΓ(t). ThehomogeneousDirichletboundary 5 V 1 condition(1.1c) istermedthe classicalStefanconditionandproblem(1.1) iscalled theclassicalStefanproblem. It : impliesthatthefreezingoftheliquidoccursataconstanttemperaturep=0. Finally,in(1.1d)wespecifytheinitial v temperaturedistributionp :Ω R,aswellastheinitialgeometryΩ. BecausetheliquidphaseΩ(t)ischaracterized i 0 X by the set x Rd : p(x,t)>→0 , we shall consider initial data p >0 in Ω. Thanks to (1.1a), the parabolic Hopf 0 { ∈ } r lemma implies that ∂ p(t)<0 on Γ(t) for t>0, so we impose the non-degeneracy condition (also known as the a n Rayleigh-Taylorsignconditioninfluidmechanics[43,45,47,14,17,16]): ∂ p λ>0 on Γ(0) (1.2) n 0 − ≥ onourinitialtemperaturedistribution.Undertheaboveassumptions,weprovedin[27]that(1.1)islocallywell-posed. Steadystates(u¯,Γ¯)of(1.1)consistofarbitrarydomainswithΓ¯ C1 andwithtemperatureu¯ 0.Themaingoal ∈ ≡ ofthispaperistoproveglobal-in-timestabilityofsuchsteadystates,independentofanyconvexityassumptions. Our analysis employs high-order energy spaces, which are weighted by the normal derivative of the temperature along themovingboundary;wecreateahybridizedenergymethod,combiningintegratedquantitieswithpointwisemethods via the Pucci extremal operators, which allow us to track the time-decay propertiesof the normal derivative of the temperature. This hybrid approachappears to be new, and is a natural extension of our previouswork [28], which necessitatedperturbationsofsphericalinitialdomains. 1991MathematicsSubjectClassification. 35R35,35B65,35K05,80A22. Keywordsandphrases. free-boundaryproblems,Stefanproblem,regularity,stability,globalexistence. 1 2 MAHIRHADZˇIC´ANDSTEVESHKOLLER 1.2. Notation. Foranys 0andgivenfunctionsf:Ω R,ϕ:Γ Rweset ≥ → → f d=ef f and ϕ d=ef ϕ . s Hs(Ω) s Hs(Γ) k k k k | | k k Ifi=1,...,dthenf, =def∂ f isthepartialderivativeoff withrespecttoxi. Similarly,f, =def∂ ∂ f,etc. Fortime- i xi ij xi xj differentiation,f =def∂ f. Furthermore,fora functionf(t,x), we shalloftenwrite f(t)forf(t, ), andf(0)tomean t t · f(0,x). ThespaceofcontinuousfunctionsonΩisdenotedbyC0(Ω).Foranygivenmulti-indexα=(α ,...,α )we 1 d set ∂α~=∂α1...∂αd. 1 d Wealsodefinethetangentialgradient∂¯by∂¯f=def f ∂ fN,whereN standsfortheoutward-pointingunitnormal N ∇ − onto∂Ωand∂ f=N f isthenormalderivativeoff.ByextendingN smoothlyintoaneighborhoodofΓinsidethe N interiorofΩwecande·fi∇ne∂¯onthatneighborhoodinthesameway. Weemploythefollowingnotationalconvention: ∂¯f=(∂¯ f,...,∂¯ f), ∂¯α~f=def(∂¯α1f,...,∂¯αdf), 1 d 1 d whereα~=(α ,...,α )denotesamulti-index.TheidentitymaponΩisdenotedbye(x)=x,whiletheidentitymatrix 1 d isdenotedbyId. WeuseC todenoteauniversal(orgeneric)constantthatmaychangefrominequalitytoinequality. WewriteX.Y todenoteX CY. WeusethenotationP(s)todenoteagenericnon-zerorealpolynomialfunction ≤ ofs1/2withnon-negativecoefficientsoforderatleast3: m 3+i P(s)= cis 2 , ci 0, m N0. (1.3) ≥ ∈ Xi=0 TheEinsteinsummationconventionisemployed,indicatingsummationoverrepeatedindices. 1.3. TheinitialdomainΩandtheharmonicgauge. ForourinitialdomainΩwechooseasimplyconnecteddomain Ω Rd, wheretheboundary∂ΩwillbedenotedbyΓ.Wefurtherassume,withoutlossofgenerality,thattheorigin ⊂ iscontainedinΩ,i.e. 0 Ω.WetransformtheStefanproblem(1.1)setonthemovingdomainΩ(t),toanequivalent ∈ problemonthefixeddomainΩ;todoso,weuseasystemofharmoniccoordinates,alsoknownastheharmonicgauge orArbitraryLagrangianEulerian(ALE)coordinatesinfluidmechanics. ThemovingdomainΩ(t)willberepresentedastheimageofatime-dependentfamilyofdiffeomorphismsΨ(t): Ω Ω(t). LetN representtheoutwardpointingunitnormaltoΓandletΓ(t)begivenby 7→ Γ(t)= x x=x +h(t,x )N, x Γ . 0 0 0 { | ∈ } Assumingthatthesignedheightfunctionh(t, )issufficientlyregularandΓ(t)remainsasmallgraphoverΓ,wecan · defineadiffeomorphismΨ:Ω Ω(t)astheellipticextensionoftheboundarydiffeomorphismx x +h(t,x )N, 0 0 0 → 7→ bysolvingthefollowingDirichletproblem: ∆Ψ=0 in Ω, (1.4) Ψ(t,x)=x+h(t,x)N(x) x Γ. ∈ WeintroducethefollowingnewvariablessetonthefixeddomainΩ: q=p Ψ (temperature), ◦ v= p Ψ (“velocity”), −∇ ◦ A=[DΨ]−1 (inverseofthedeformationtensor), J=detDΨ (Jacobiandeterminant), We now pull-back the Stefan problem(1.1) from Ω(t) onto the fixed domain Ω. If we let g denote the Jacobian of the transformationΨ(t, ) :Γ Γ(t), and let n(t, ) denote the outward-pointingunitnormalvector to the moving Γ · | → · surfaceΓ(t),thenthefollowingrelationshipholds[15]: J−1√gn Ψ(t,x)=Ak(t,x)N (x). i◦ i k It thus follows that the outward-pointing unit normal vector n(t, ) to the moving surface Γ(t) can be written as · (n Ψ)(t,x)=ATN/ATN . We shall henceforth drop the explicit composition with the diffeomorphism Ψ, and ◦ | | simplywrite n(t,x)=ATN/ATN | | fortheunitnormaltothemovingboundaryatthepointΨ(t,x) Γ(t). ∈ GLOBALSTABILITYOFSTEADYSTATESINTHECLASSICALSTEFANPROBLEM 3 TheclassicalStefanproblemonthefixeddomainΩiswrittenas(see[27,28]) q Aj(Akq, ), = v Ψ in [0,T) Ω, (1.5a) t− i i k j − · t × vi+Akq, =0 in [0,T) Ω, (1.5b) i k × q=0 on [0,T) Γ, (1.5c) × v ATN h = · on [0,T) Γ, (1.5d) t N ATN × · ∆Ψ=0 on [0,T) Ω, (1.5e) × Ψ=e+hN on [0,T) Γ, (1.5f) × q=q >0 on t=0 Ω, (1.5g) 0 { }× h=0 on t=0 Γ, (1.5h) { }× Problem(1.5)isareformulationoftheproblem(1.1). Observethattheboundarycondition(1.5d)isequivalentto Ψ n(t)=v n(t) on [0,T) Γ sothat Ψ(t)(Γ)=Γ(t), (1.6) t · · × whichisbutarestatementoftheStefancondition(1.1b). SincethefactorN ATN willshowuprepeatedlyinvarious · calculations,itisusefultointroducetheabbreviation: Λd=efN ATN. (1.7) · Note thatinitially Λ=1andit willremainclose to 1, since forsmallh thetransitionmatrixA remainsclose to the identitymatrix. Since the identity map e:Ω Ω is harmonic in Ω and Ψ e=hN on Γ, standard elliptic regularity theory for → − solutionsto(1.4)showsthatfort [0,T), ∈ Ψ(t, ) e C h(t, ) , s>0.5, k · − kHs(Ω)≤ k · kHs−0.5(Γ) sothatforhsufficientlysmallandslargeenough,theSobolevembeddingtheoremshowsthat ΨisclosetoId,and ∇ bytheinversefunctiontheorem,Ψisadiffeomorphism. 1.3.1. Thehigh-orderenergyandthehigh-ordernorm. Wewillspecializetothecased=2fortheremainderofthis paper. The case d=3 requiresonly our normsto contain one more degreeof differentiability,while the rest of the argumentisentirelyanalogous. Todefinethenaturalenergiesassociatedwiththemainproblem,wemustemploytangentialderivativesinaneigh- borhood which is sufficiently close to the boundary Γ. Near Γ=∂Ω, it is convenient to use tangential derivatives ∂¯α~, while away from the boundary, Cartesian partial derivatives ∂xi are natural. For this reason, we introduce a non-negativeC∞ cut-offfunctionµ:Ω¯ R withtheproperty + → µ(x) 0 if x ρ; µ(x) 1 if dist(x,Γ) σ. ≡ | |≤ ≡ ≤ Hereρ,σ R+ arechoseninsuchawaythatB (0)⋐Ωand x dist(x,Γ) σ Ω B (0). ρ ρ ∈ { | ≤ }∈ \ Definition1.1(Higher-orderenergies). Thefollowinghigh-orderenergyanddissipationfunctionalsarefundamental toouranalysis: def (t)= (q,h)(t)= E E 1 1 1 µ1/2∂¯α~∂bv 2 + ( ∂ q)1/2Λ∂¯α~∂bΨ2 + µ1/2(∂¯α~∂bq+∂¯α~∂bΨ v) 2 2 k t kL2x 2 | − N t |L2x 2 k t t · kL2x X X X |α~|+2b≤5 |α~|+2b≤6 |α~|+2b≤6 1 (1 µ)1/2∂α~∂bv 2 + (1 µ)1/2(∂α~∂bq+∂α~∂bΨ v) 2 k − t kL2x 2 k − t t · kL2x X X |α~|+2b≤5 |α~|+2b≤6 4 MAHIRHADZˇIC´ANDSTEVESHKOLLER and def (t)= (q,h)(t)= D D µ1/2∂¯α~∂bv 2 + ( ∂ q)1/2Λ∂¯α~∂bΨ 2 + µ1/2(∂¯α~∂bq +∂¯α~∂bΨ v) 2 k t kL2x | − N t t|L2x k t t t t· kL2x X X X |α~|+2b≤6 |α~|+2b≤5 |α~|+2b≤5 + (1 µ)1/2∂α~∂bv 2 + (1 µ)1/2(∂α~∂bq +∂α~∂bΨ v) 2 , k − t kL2x k − t t t t· kL2x X X |α~|+2b≤6 |α~|+2b≤5 wherewerecallthedefinitionofΛgivenin(1.7). Finally,weintroducethetotalenergyE(t): t E(t)d=ef sup (τ)+ (τ)dτ. (1.8) E Z D 0≤s≤t 0 Note that the boundary norms of the gauge function Ψ are weighted by √ ∂ q. We thus introduce the time- N − dependentfunction χ(t)d=efinf( ∂ q)(t,x)>0, N x∈Γ − whichwillbeusedtotracktheweightedbehaviorofh. Itisimportanttonote,thatduetothesmoothnessassumption onΓitiseasytoseethatforanylocalcoordinatechart(∂ ,...,∂ )forΓwehavetheequivalence s1 sd−1 ( ∂ q)1/2Λ∂¯α~∂bΨ2 ( ∂ q)1/2∂β1...∂βd−1h2 , (1.9) | − N t |L2x≈ | − N s1 sd−1 |L2(Γ) |α~|X+2b≤6 β=(β1X,...,βd−1) |β|+2b≤6 where X Y means that there exist positive constants C and C such that C Y X C Y. In our case, the two 1 2 1 2 ≈ ≤ ≤ constantsdependonthechoiceofthelocalchart. Definition1.2(High-ordernorm). Thefollowinghigh-ordernormisfundamentaltoouranalysis: 3 2 S(t)=def ∂lq 2 + q 2 + ∂lq 2 k t kL∞H6−2l k kL2H6.5 k t tkL2H5−2l Xl=0 Xl=0 + sup eβs q(s, ) 2 + ∂¯α~∂lv 2 k · kH5 k t kL2L2 0≤s≤t X |α~|+2l≤6 3 2 +χ(t) ∂lh2 +χ(t) ∂l+1h2 + h4 | t |L∞H6−2l | t |L2H5−2l | |L∞H4.5 Xl=0 Xl=0 (1.10) Here β=2λ η, where λ is the smallest eigenvalue of the Dirichlet-Laplacianon Ω and η>0 is a small but fixed − numbertobedeterminedlater. Remark1.3. Asubtlefeatureoftheabovedefinitionisthelossofa 1-derivative-phenomenonforthetemperatureq. 2 Bytheparabolicscaling(whereonetimederivativescalesliketwospatialderivatives),onemightexpectqtobelong to L2H7([0,T);Ω), since ∂l+1q L2H5−2l([0,T);Ω), for l=0,1,2. This is, however, not the case, as the height- t ∈ evolutionequation(1.5d)scalesina hyperbolicfashion,andthusplacesarestriction onthetop-orderregularityof theunknownq,allowingonlyforq L2H6.5([0,T);Ω). ∈ 1.4. Steady states. Note that any C1 simply connected domain represents a steady state of (1.1). In other words, for any simply connected domain Ω¯ C1, the pair (u¯ 0,Γ¯=∂Ω¯) forms a time-independentsolution to (1.1). In ∈ ≡ particular, it is challenging to determine which steady state a small perturbation will decay to. Thus the problem of asymptotic stability, rather than the optimalregularityof weak/viscositysolutions, is one of the main motivating questionsforthiswork. Inparticular,weworkwithclassicalsolutionswithahighdegreeofdifferentiabilityonthe initialdata. 1.5. Rayleigh-Taylorsign condition or non-degeneracycondition on q . With respect to q , condition (1.2) be- 0 0 comes inf[ ∂ q (x)] δ>0 onΓ. N 0 x∈Γ− ≥ GLOBALSTABILITYOFSTEADYSTATESINTHECLASSICALSTEFANPROBLEM 5 For initial temperature distributions that are not necessarily strictly positive in Ω, this condition was shown to be sufficientforlocalwell-posednessfor(1.1)(see[27,39,41]). Ontheotherhand,ifwerequirestrictpositivityofour initialtemperaturefunction1, q >0 inΩ, (1.11) 0 thentheparabolicHopflemma(see,forexample,[20])guaranteesthat ∂ q(t,x)>0for0<t<T onsomeapriori N − (possiblysmall)timeinterval,which,inturn,showsthat and arenormsfort>0,butuniformitymaybelostas E D t 0. To ensurea uniformlower-boundfor ∂ q(t) as t 0, we impose the Rayleigh-Taylorsign conditionwith N → − → thefollowinglower-bound: ∂ q C q ϕ dx, (1.12) N 0 ∗ 0 1 − ≥ Z Ω Here, ϕ is the positive first eigenfunction of the Dirichlet Laplacian ∆ on Ω, and C >0 denotes a universal 1 ∗ − constant. Theuniformlower-boundin(1.12)thusensuresthatoursolutionsarecontinuousintime;moreover,(1.12) allows usto establish a time-dependentoptimallower-boundfor the quantityχ(t)=inf ( ∂ q)(t,x)>0 for all x∈Γ N − timet 0,whichiscrucialforouranalysis. ≥ 1.6. Mainresult. Ourmainresultisaglobal-in-timestabilitytheoremforsolutionsoftheclassicalStefanproblem forsurfaceswhichareassumedtobeclosetoagivensufficientlysmoothdomainΩandfortemperaturefieldscloseto zero.Thenotionsofnearandclosearemeasuredbyourenergynormsaswellasthedimensionlessquantity q K=defk 0k4. (1.13) q 0 0 k k asexpressedinthefollowing Theorem 1.4. Let (q ,h ) satisfy the Rayleigh-Taylorsign condition(1.12), the strict positivity assumption (1.11), 0 0 andsuitablecompatibilityconditions. LetK bedefinedasin(1.13). Thenthereexistsanǫ >0andamonotonically 0 increasingfunctionF:(1, ) R ,suchthatif + ∞ → ǫ S(0)< 0 , (1.14) F(K) thenthereexistuniquesolutions(q,h)toproblem(1.5)satisfying S(t)<Cǫ , t [0, ), 0 ∈ ∞ forsomeuniversalconstantC>0.Moreover,thetemperatureq(t) 0ast withbound → →∞ q(t, ) 2 Ce−βt, k · kH4(Ω)≤ where β=2λ O(ǫ )andλis thesmallest eigenvalueofthe Dirichlet-LaplacianonΩ. The movingboundaryΓ(t) 0 settlesasympt−oticallytosomenearbysteadysurfaceΓ¯ andwehavetheuniform-in-timeestimate sup h(t, ) h .√ǫ 0 4.5 0 | · − | 0≤t<∞ Remark1.5. The increasing functionF(K)given in (1.14) hasan explicit form. ForuniversalconstantsC¯,C>1 choseninSection4, F(K)=defmax 8K2CC¯K2,C¯10(lnK)10K20C¯λ . (1.15) { } Remark1.6. The use of the constantK in our smallness assumption(1.14) allows us to determine a time T=T K whenthedynamicsoftheStefanproblembecomestronglydominatedbytheprojectionofqontothefirsteigenfunction ϕ oftheDirichlet-Laplacian. Explicitknowledgeofthe K-dependencein the smallnessassumption(1.14) permits 1 theuseofenergyestimatestoshowthatsolutionsexistinourenergyspaceonthetime-interval[0,T ]. Fort T , K K ≥ certainerrorterms(thatcannotbecontrolledbyournormsforlarget)becomesign-definitewithagoodsign. Remark1.7. Ananalogoustheoremwasstatedin[28],forperturbationsofsteadysurfacesinitiallyclosetoasphere. Therefore,thisworkgeneralizesthatresult. Moreover,ourmethodsaregeneralenoughtoapplytoothergeometries aswell. Anexampleisthatofafreeboundaryparametrizedasagraphoveraperiodicflatinterface. 1Condition(1.11)isnatural,sinceitdeterminesthephase:Ω(t)={q(t)>0}. 6 MAHIRHADZˇIC´ANDSTEVESHKOLLER Remark1.8(Oncompatibilityconditions). Thefirstcompatibilityconditionontheinitialtemperatureq is 0 q =0. 0 Γ | The secondconditionarises by restricting the parabolicequation(1.5a) to the boundaryΓ andusing the boundary conditions(1.5c)and(1.6). Itgives ∂ q +(d 1)κ ∂ q +(∂ q )2=0 on Γ. NN 0 Γ N 0 N 0 − Here κ standsforthe mean curvatureofΓ. Higherordercompatibilityconditionsarise by takingtime derivatives Γ of (1.5a),re-expressingthemintermsofpurelyspatialderivativesvia(1.5a)andrestrictingtheresultingequationto theboundaryΓattimet=0. Remark1.9. Aninterestingproblemistodeterminetheasymptoticattractor-thesteadystateΓ¯ justfromtheinitial data(u ,Γ ).Thisisstronglyconnectedtotheso-calledmomentumproblem,whichisaproblemofdeterminingthe 0 0 domainΩfromtheknowledgeofitsharmonicmomentac = φdx,φ:Rd R, ∆φ=0.Arelatedquestionarises φ Ω → intheHele-Shawproblem,see[26]. R 1.7. Localwell-posedness theories. In [27], we established the local-in-timeexistence, uniqueness, andregularity fortheclassicalStefanprobleminL2-basedSobolevspaces,withoutderivativeloss,usingthefunctionalframework givenbyDefinition1.1.Thisframeworkisnatural,andreliesonthegeometriccontrolofthefree-boundary,analogous tothatusedintheanalysisofthefree-boundaryincompressibleEulerequationsin[14,15];thesecond-fundamental formiscontrolledbyaanaturalcoercivequadraticform,generatedfromtheinner-productofthetangentialderivative ofthecofactormatrixJA,andthetangentialderivativeofthevelocityofthemovingboundary,andyieldscontrolof thenorm ( ∂ q(t))∂¯kh2dx′ foranyk 3. TheHopflemmaensurespositivityof ∂ q(t)andtheTaylorsign Γ − N | | ≥ − N conditionRonq0ensuresauniformlower-boundast 0. → The first local existence results of classical solutions for the classical Stefan problem were established by Meir- manov(see[39]andreferencestherein)andHanzawa[29]. Meirmanovregularizedtheproblembyaddingartificial viscosityto(1.1b)andfixedthemovingdomainbyswitchingtotheso-calledvonMisesvariables,obtainingsolutions withlessSobolev-regularitythantheinitialdata. Similarly,HanzawausedNash-Moseriterationtoconstructalocal- in-timesolution,butagain,withderivativeloss. Alocal-in-timeexistenceresultfortheone-phasemulti-dimensional Stefanproblemwasprovedin[24],usingLp-typeSobolevspaces. Forthetwo-phaseStefanproblem,alocal-in-time existenceresultforclassicalsolutionswasestablishedin[41]intheframeworkofLp-maximalregularitytheory. 1.8. Priorwork. Thereisalargeamountofliteratureontheclassicalone-phaseStefanproblem.Foranoverviewwe referthereaderto[22,39,46]aswellastheintroductionto[28].First,weaksolutionsweredefinedin[31,21,37].For theone-phaseproblemstudiedherein,avariationalformulationwasintroducedin[23],whereinadditionalregularity results for the free surface were obtained. In [6] it was shown that in some space-time neighborhoodof points x 0 onthefree-boundarythathaveLebesguedensity,theboundaryisC1 inbothspaceandtime,andsecondderivatives oftemperaturearecontinuousuptotheboundary. Undersomeregularityassumptionsonthetemperature,Lipschitz regularity of the free boundarywas shown in [7]. In related works [34, 35] it was shown that the free boundaryis analyticinspaceandofsecondGevreyclassintime,undertheaprioriassumptionthatthefreeboundaryisC1 with certainassumptionsonthetemperaturefunction.In[9]thecontinuityofthetemperaturewasprovedinddimensions. Asforthetwo-phaseclassicalStefanproblem,thecontinuityofthetemperatureinddimensionsforweaksolutions wasshownin[10]. SincetheStefanproblemsatisfiesamaximumprinciple,itsanalysisisideallysuitedtoanothertypeofweaksolu- tioncalledtheviscositysolution. Regularityofviscositysolutionsforthetwo-phaseStefanproblemwasestablished inaseriesofseminalpapers[3,4].Existenceofviscositysolutionsfortheone-phaseproblemwasestablishedin[32], andforthetwo-phaseproblemin[33]. Alocal-in-timeregularityresultwasestablishedin[12],whereitwasshown thatinitiallyLipschitzfree-boundariesbecomeC1 overapossiblysmallerspatialregion. Foranexhaustiveoverview andintroductiontotheregularitytheoryofviscositysolutionswereferthereaderto[11]. In[36]theauthorshowed bythe useofvonMises variablesandharmonicanalysis, thatanprioriC1 free-boundaryinthe two-phaseproblem becomessmooth. In order to understand the asymptotic behavior of the classical Stefan problem on external domains, in [42] the authorsprovedthatonacomplementofagivenboundeddomainG,withnon-zeroboundaryconditionsonthefixed boundary∂G, the solutiontothe classicalStefanproblemconverges,in a suitablesense, tothe correspondingsolu- tionoftheHele-Shawproblemandsharpglobal-in-timeexpansionratesfortheexpandingliquidblobareobtained. Moreover,theblobasymptoticallyhasthegeometryofaball. Notethatthenon-zeroboundaryconditionsactasan GLOBALSTABILITYOFSTEADYSTATESINTHECLASSICALSTEFANPROBLEM 7 effectiveforcing which is absentfrom our problemand the techniquesof [42] do not directly apply. Since the cor- respondingHele-Shawproblem(intheabsenceofsurfacetensionandforcing)isnotadynamicproblem,possessing only time-independent solutions, we are not able to use the Hele-Shaw solution as a comparison problem for our problem. A global stability result for the two-phase classical Stefan problem in a smooth functional framework was also establishedin[39]foraspecific(andsomewhatrestrictive)perturbationofaflatinterface,whereintheinitialgeometry is a strip with imposed Dirichlet temperatureconditions on the fixed top and bottom boundaries, allowing for only one equilibriumsolution. A globalexistence result for smooth solutions was given in [18] under the log-concavity assumption on the initial temperature function, which in light of the level-set reformulationof the Stefan problem, requiresconvexityoftheinitialdomain(apropertythatispreservedbythedynamics). Remark 1.10. We remark that global stability of solutions in the presence of surface tension does not require the use offunctionframework with a decayingweight, suchas ∂ q(t). Inthis regard, the surface tensionproblem is N − simpler for two importantreasons: first, the surface tension contributesa positive-definiteenergy-contributionthat is uniform-in-time, and provides better regularity of the free-boundary(by one spatial derivative), and second, the spaceofequilibriaisfinite-dimensionalandthusitiseasiertounderstandthedegrees-of-freedomthatdeterminethe asymptoticstateofthesystem. 1.9. Methodology. Broadly speaking, our methods combine high-orderenergy estimates with maximum principle techniques.Oncetheproblemisformulatedonthefixeddomainwiththehelpoftheharmonicgaugeexplainedabove, wenoticethatthenaturalquadraticenergyquantitiesthattracktheregularitybehaviorofthemovingboundary,come weighted with the normalderivativeof the temperature. This weightis a time-dependentquantityand its evolution is tied to the free boundary itself. This coupling is nonlinear and it is one of the central difficulties in closing our estimates. Ourstrategyisbasedon[28]anditcontainsthreebasicsteps. Wefirstshowthatundertheassumptionofsmallness onthenormS(t)oversometimeinterval[0,T],theenergyE andthenormS areequivalent,i.e. S(t).E(t).S(t), t [0,T]. (1.16) ∈ Oursecondstepistoestablishthekeyenergyinequalityintheform 1 t E(t) C + (∂ q )∂¯α~∂lh2dS(Γ)+P(S(t)), (1.17) ≤ 0 2 Z Z N t | t | |α~|X+2l≤6 0 Γ where P is a cubic polynomial(see (1.3)) and C is a small quantity depending only on the initial data. Combin- 0 ing(1.16)and(1.17),weinferthat t S(t) C˜ +C (∂ q )∂¯α~∂lh2dS(Γ)+P(S(t)) (1.18) ≤ 0 Z Z N t | t | X 0 Γ |α~|+2l≤6 dangerousterm onthetimeintervalofexistence.Ifitwere|notforthesumo{nztheright-handsid}eabove,asimplecontinuityargument wouldyieldaglobalexistenceresultforsmallinitialdata.However,thesumappearingontheright-handsideof(1.18), whileseeminglycubic,cannotbeboundedbyP(S(t)). Instead,inthethirdstepweshowthatafteracertain,precisely quantifiedamountoftime,this“dangerousterm”becomesnegativeandcanthusbetriviallyboundedfromaboveby zero. Thekeynoveltywithrespectto[28]isanewquantitativelowerboundontheweight ∂ q whichappearsinour N − definitionoftheenergyE(t).Notethatthisquantityisexpectedtoconvergeexponentiallyfastto0astheunknowns settle to anasymptoticequilibrium. We employthe theoryof “halfeigenvalues”associatedwith the Bellman-Pucci- typeoperatorstogenerateacomparisonfunction,whichthenallowsustousethemaximumprincipleandgetanearly sharplowerbound: ∂ q&e(−λ+O(ǫ))t, N − whereλdenotesthefirstDirichleteigenvalueassociatedwiththedomainΩ.Inourpreviouswork[28],wereliedon aratherexplicitBessel-typecomparisonfunctionsusedbyOddsonin[40],whichinparticular,requiredthatwework inanearlysphericaldomain.TheabovelowerboundismuchmoreflexibleanditisexplainedcarefullyinSection3. Thepresentationinthepaperisconsiderablysimplifiedwithrespectto[28]andwebelievethatourenergymethod in conjunctionwith maximumprinciplescan be useful for the stability analysis in other free boundaryproblemsin absenceofsurfacetension. 8 MAHIRHADZˇIC´ANDSTEVESHKOLLER 1.10. Planof the paper. In Section 2, we introducethe bootstrapassumptionsand formulatethe equivalencerela- tionshipbetweentheenergyandthenorm. InSection3weprovideadynamiclowerboundestimateonχ(t). Thisis themainnewingredientwithrespectto[28]andweusethetheoryofhalf-eigenvaluesforthePuccioperators.Finally, in Section 4, we give the proof of Theorem1.4, thereby explainingour continuitymethod as well as a comparison argumentusedtoshowthesign-definitenessofthe“dangerouslinearterms”describedabove. 2. BOOTSTRAP ASSUMPTIONS AND NORM-ENERGY EQUIVALENCE 2.1. The bootstrapassumptions. Let[0,T)be agiventime-intervalofexistenceofsolutionsto(1.5). We assume thatthefollowingtwoassumptionshold: S(t) ǫ, t [0,T), (2.19) ≤ ∈ χ(t)&c1e−(λ+η2)t, t [0,T), (2.20) ∈ whereǫandη aretobechosensufficientlysmalllaterandλstandsforthefirstDirichleteigenvalueassociatedwith thedomainΩ. 2.2. NormS andtotalenergyE areequivalent. Recallthenotation“ ”introducedin(1.9). ≈ Proposition2.1. Thereexistsasufficientlysmallǫ′suchthatifS(t) ǫ′onatimeinterval[0,T]then ≤ S(t) E(t), t [0,T]. ≈ ∀ ∈ Proof. Theproofofthisfactisoneofthepillarsofourstrategy. IthasbeenpresentedindetailinSections2.1-2.5 andSection4.2of[28]and,therefore,weomitithere. WenotethatthedirectionS(t).E(t)isobviouslyharderto prove,as the energyfunctionE(t) a-prioricontrolsonly tangentialderivativesof the temperatureq. In [28] we use aversionoftheellipticregularitystatementforequationswithSobolev-classcoefficientstoobtaincontrolofnormal derivatives(see[13]). (cid:3) 3. LOWERBOUND ONχ(t)AND IMPROVEMENT OF THESECOND BOOTSTRAP ASSUMPTION Theheatequation(1.5a)forqcanbewritteninnon-divergenceformas q a q, b q, =0 in Ω, (3.21a) t kj kj k k − − q=0 on Γ, (3.21b) q(0, )= q >0 in Ω (3.21c) 0 · wherethecoefficientmatrixa=(a ) ,andthevectorb=(b ,b )areexplicitlygivenby kj k,j=1,2 1 2 a =defAkAj; b d=efAk Aj+AkΨi. (3.22) kj i i k i,j i i t Bythebootstrapassumption(2.19)andthedefinition(1.10)ofS(t),wehavethat h .√ǫon[0,T),andthere- 4.5 | | forebytheSobolevembeddingH1(Γ)֒ L∞(Γ),weinferthat h .√ǫ.Fromthisobservation,(3.22),andthe W3,∞ → | | definitionofthetransitionmatrixA,weinferthat a δ .√ǫ, (k,j=1,2), kj kj | − | b .√ǫ, (i=1,2). i | | Therefore,thereexistsaconstantK>0suchthattheellipticityconstantsassociatedwiththematrix(a ) are ij i,j=1,2 betweenthevaluesµ′ =1 K√ǫandµ′ =1+K√ǫuniformlyover[0,T). 1 − 2 2 2 Before we proceed with calculating a lower bound for χ(t), we briefly explain the Bellman operators[2, 5, 19, 25, 38] whichareclosely connectedto the well-knownextremalPuccioperators. Theywillallowusto formulatea nonlinearanalogueofthe“first”eigenvaluefortheellipticpartoftheoperatordefinedin(3.21a). LetΩ bean arbitrarysimply connectedC1-domain. We definethe extremalPuccioperator − [25, 5] with Mµ1,µ2 parameters0<µ µ by 1 2 ≤ − ϕ(x)d=ef inf ϕ(x). (3.23) Mµ1,µ2 L∈Kµ1,µ2L GLOBALSTABILITYOFSTEADYSTATESINTHECLASSICALSTEFANPROBLEM 9 Here denotesthesetofalllinearsecond-orderellipticoperators,whoseellipticityconstantisbetweenµ and Kµ1,µ2 1 µ ,i.e., 2 d=ef L L=a ∂ +b ∂ +c, a ,b ,c C0(Ω), (3.24) Kµ1,µ2 | ij ij i i ij i ∈ (cid:8) µ ξ 2 a ξ ξ µ ξ 2, ξ Rd . 1 ij i j 2 | | ≤ ≤ | | ∈ (cid:9) Itiswellknownthattheoperators − are,ingeneral,fullynonlinearsecond-orderellipticoperators,positive, Mµ1,µ2 andhomogenousoforderone.Thelatterpropertyallowsustoformulateanassociated“eigenvalue”problem,looking forthesolutionsof − u=λu in Ω, (3.25) −Mµ1,µ2 u=0 on ∂Ω. Wenextstatesomeoftheresultsfrom[38]thatthatwillplayanimportantroleinthispaper(forfurtherreferenceson theso-calledhalf-eigenvaluesassociatedwithpositivehomogenousfullynonlinearoperatorswereferthereader,for example,to[5,2,19]): There exist two positive constants λ and λ called the first half-eigenvalues and two functions ̺ ,̺ 1 2 1 2 • C2(Ω) C(Ω¯)suchthat(λ ,̺ )and(λ ,̺ )solve(3.25),and̺ >0,̺ <0inΩ. ∈ 1 1 2 2 1 2 ∩ The first two half-eigenvaluesare simple, i.e. all positivesolutionsto (3.25) are ofthe form(λ ,α̺ )with 1 1 • α>0andanalogously,allnegativesolutionsareoftheform(λ ,α̺ ),α>0. 2 2 Finally,thefirsttwohalf-eigenvaluesarecharacterizedinthefollowingmanner: • λ = sup µ(A), λ = inf µ(A), (3.26) 1 2 A∈Kµ1,µ2 A∈Kµ1,µ2 whereµ(A)standsforthesmallestDirichleteigenvalueassociatedwiththesecondorderlinearellipticoper- atorA. 3.1. Lower bound on χ(t) and the improvement of (2.20). The key ingredientto the proofs of Propositions 2.1 and 4.1 is a quantitative lower bound on the weight χ(t). This is achieved by using the maximum principle and constructinganappropriatecomparisonfunction. Lemma3.1. Underthebootstrapassumptions(2.19)-(2.20)withǫsufficientlysmall,thefollowinginequalityholds: χ(t)&c e−(λ+λ˜(t))t, 1 wherec = q ϕ dxisthefirstcoefficientintheeigenfunctionexpansionoftheinitialdatumq withrespecttothe 1 Ω 0 1 0 L2orthonorRmalbasis ϕ ,ϕ ,... oftheeigenvectorsoftheoperator ∆onΩ,i.eq =c ϕ +c ϕ +.... Moreover, 1 2 0 1 1 2 2 { } − λstandsforthesmallestDirichleteigenvalueassociatedwiththedomainΩandλ˜(t)satisfiestheestimate: λ˜(t) C√ǫ. | |≤ Inparticular,withǫ>0sufficientlysmallsothatC√ǫ<η/4,weobtaintheimprovementofthebootstrapbound(2.20) givenbyχ(t)&c1e−(λ1+η/4)t. Proof. Let us chooseµ d=ef1 K√ǫ and µ d=ef1+K√ǫ. Recall thatK was definedin the paragraphafter (3.22). It 1 2 − followsthatL . Welet̺ bethefirsthalf-eigenvectorassociatedto − asabove.Considerthefollowing ∈Kµ1,µ2 1 Mµ1,µ2 comparisonfunction v(t,x)d=efe−λ1t̺ . 1 Notethatvvanisheson∂Ω=Γ.Astraightforwardcalculationtogetherwiththedefinitionof − showsthat Mµ1,µ2 (∂t L)v= λ1v e−λ−1tL̺1 − − − λ v e−λ1t − ̺ ≤− 1 − Mµ1,µ2 1 = λ v+e−λ1tλ ̺ 1 1 1 − =0. Thereforevisasubsolutiontotheparabolicproblem(3.21). Thenextkeyobservationisthattheeigenfunction̺ (x) 1 behaveslikeaconstantmultipleofthedistancefunctiondist(x,Γ)asxapproachestheboundaryΓ. Namely,sincethe operator −isconcave,thesolutionisC2,α [44,8]andtheHopflemma ∂ ̺ >0holds(seeforinstanceLemma N 1 M − 2.1in[5]). Therefore,functionvbehaveslikecdist(x,Γ)e−λ−1tasxapproachestheboundaryΓforsomeconstantc. 10 MAHIRHADZˇIC´ANDSTEVESHKOLLER Heredist(x,Γ) denotesthe distancefunctionto the boundaryΓ. We first wantto showthatforanyarbitrarilysmall timeσ>0thereexistsastrictlypositiveconstantδ(σ)>0suchthatq δvisapositivesupersolutiontotheparabolic − problem(3.21)onthetimeinterval[σ,T). Sincevisasubsolutionandqisasolution,itfollowsthatforanyδ>0,q δvisasupersolution.Thepositivityof − q δvatt=σfollowsfromtheparabolicHopflemma,fromwhichweinfertheexistenceofaconstantδ(σ)suchthat q−>δ(σ)uniformlyoverΩ¯. Notethatwehaveusedthefactthatv(σ,x)behaveslikec dist(x)neartheboundaryΓ v × forsomepositiveconstantc. Thusbythemaximumprinciple,q δ(σ)v 0on[σ,T).Thisimplies − ≥ q(t,x) δ(σ)v(t,x) Cδ(σ)dist(x,Γ)e−λ1t, t [σ,T), ≥ ≥ ∈ whichyields ∂q(t,x) Cδ(σ)e−λ1t, t [σ,T). − ∂N ≥ ∈ Theaboveestimateishowevernotyetsatisfactory,astheconstantδ(σ)maydegenerateasσgoestozero. WenowrevisitourusageoftheparabolicHopflemmaabove.Forsmallt>0let Ω = x Ω dist(x,Γ) t , t>0. t { ∈ ≥ } (cid:12) NotethatΩtisacompactpropersubsetofΩ.Fromth(cid:12)eproofoftheparabolicHopflemma(seeforinstanceTheorem 3.14in[20]),thevalue ∂q/∂N isproportionaltotheminimalvalueofthetemperatureqonaspace-timeregion t=σ − | strictlycontainedinthespace-timeslabK :=Ω [t/2,3t/2] Ω [0,2t]dividedbyt(whichisproportionaltothe t t × × distanceofK fromtheparabolicboundaryofΩ [0,2t]). Notethat,astapproaches0wemaylooseuniformity-in- t × timeinourconstants. Thisishowevernotthecasesince∂ qiscontinuousatt=0andbytheassumption(1.12) N ∂ q ∂ q =− N 0c C c . (3.27) N 0 1 ∗ 1 − c ≥ 1 Assumption(1.12)isusedonlyin(3.27)toinsurethatthereexistsauniversalconstantC independentofc suchthat ∗ 1 L=( ∂ q )/c >C .ThequantityLisdimensionless,andtheassumptionL>C isnotarestrictionontheinitial N 0 1 ∗ ∗ − data. Inotherwords,ifwehadnotassumed(1.12),theonlymodificationinthestatementofthemaintheoremwould bethatthesmallnessassumptiononinitialdata(1.14)isadditionallyexpressedintermsofLaswell. Astotheboundonλ˜,notethatby(3.26),theexponentλ ischaracterizedbythecondition 1 λ = sup µ(A). 1 A∈Kµ1,µ2 Since µ 1 .√ǫ, i=1,2, it follows that for any matrix A the estimate A Id .√ǫ holds. Since the | i− | ∈Kµ1,µ2 | − | functionµ()isacontinuousfunctionfromthespaceof2 2matricesintoR,itthusfollowsthat · × λ˜ = λ µ(Id) = sup µ(A) µ(Id) .√ǫ. 1 | | | − | | − | A∈Kµ1,µ2 (cid:3) 4. ENERGY ESTIMATESAND IMPROVEMENT OF THEFIRST BOOTSTRAP ASSUMPTION Proposition4.1. Assumingthebootstrapassumption(2.19)andwithǫ>0chosensufficientlysmall, 1 t E(t) C + ( ∂ q )∂¯α~∂lΨ2dS(Γ)+CP(S(t)), (4.28) ≤ 0 2 Z Z − N t | t | X 0 Γ |α~|+2l≤6 where C dependsonlyonthe initialdata,C>0isa genericpositive constantdependingonlyonthe dimensiond, 0 andP denotesanorder-rpolynomialwithr 3oftheform(1.3). ≥ Proof. TheproofofthepropositionisentirelyanalogoustotheproofofProposition3.4from[28]. (cid:3) Proposition 4.2. Let the solution (q,h) to the Stefan problem (1.5) exist on a given maximal interval of existence [0, )onwhichthebootstrapassumptions(2.19)and(2.20)aresatisfied. T (a) ThereexistsauniversalconstantC¯ suchthatifthesmallnessassumption(1.14)fortheinitialdataholdsand if T =defC¯lnK,then K T ≥ q (T ,x)>Cc e−λ1TKϕ (x), x B (0), t K 1 1 1 − ∈

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.