ebook img

GIS-based Analysis of Coastal Lidar Time-Series PDF

90 Pages·2014·4.112 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview GIS-based Analysis of Coastal Lidar Time-Series

SPRINGER BRIEFS IN COMPUTER SCIENCE Eric Hardin Helena Mitasova Laura Tateosian Margery Overton GIS-based Analysis of Coastal Lidar Time-Series 123 SpringerBriefs in Computer Science SeriesEditors StanZdonik ShashiShekhar JonathanKatz XindongWu LakhmiC.Jain DavidPadua Xuemin(Sherman)Shen BorkoFurht V.S.Subrahmanian MartialHebert KatsushiIkeuchi BrunoSiciliano SushilJajodia NewtonLee Moreinformationaboutthisseriesathttp://www.springer.com/series/10028 Eric Hardin • Helena Mitasova (cid:129) Laura Tateosian Margery Overton GIS-based Analysis of Coastal Lidar Time-Series 123 EricHardin HelenaMitasova DepartmentofPhysics DepartmentofMarine,Earth NorthCarolinaStateUniversity andAtmosphericSciences Raleigh,NC,USA NorthCarolinaStateUniversity Raleigh,NC,USA LauraTateosian MargeryOverton CenterforGeospatialAnalytics DepartmentofCivil,Construction NorthCarolinaStateUniversity andEnvironmentalEngineering Raleigh,NC,USA NorthCarolinaStateUniversity Raleigh,NC,USA ISSN2191-5768 ISSN2191-5776(electronic) ISBN978-1-4939-1834-8 ISBN978-1-4939-1835-5(eBook) DOI10.1007/978-1-4939-1835-5 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2014947349 ©TheAuthor(s)2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 Introduction ................................................................... 1 1.1 MappingCoastalTerrainChange ....................................... 1 1.2 GRASSGISandSampleDataSet ...................................... 3 1.3 OrganizationofThisBook .............................................. 5 References...................................................................... 6 2 ProcessingCoastalLidarTimeSeries ..................................... 7 2.1 GeneralWorkflow........................................................ 7 2.2 AnalysisofLidarPointClouds.......................................... 9 2.3 ComputingDEMs........................................................ 11 2.3.1 MaskingSurveyedAreas........................................ 11 2.3.2 Binning........................................................... 13 2.3.3 SplineInterpolation.............................................. 14 2.4 EliminatingWaterSurfaceFeatures..................................... 19 2.5 CorrectingSystematicErrors............................................ 20 References...................................................................... 25 3 Raster-BasedAnalysis ....................................................... 27 3.1 CoreandEnvelope,DynamicLayer .................................... 27 3.2 Time-of-MinimumandTime-of-Maximum ............................ 29 3.3 Per-CellUnivariateStatistics............................................ 30 3.4 Per-CellRegressionAnalysis............................................ 32 References...................................................................... 34 4 FeatureExtractionandFeatureChangeMetrics ......................... 35 4.1 ShorelinesandShorelineMigrationRange............................. 35 4.2 ForeduneFeatures........................................................ 36 4.2.1 ForeduneRidgeLine ............................................ 37 4.2.2 ForeduneToeLine............................................... 39 4.3 CrescenticandParabolicDuneFeatures................................ 42 v vi Contents 4.4 GeneratingTransects..................................................... 46 4.4.1 TransectsatUniformLocations................................. 46 4.4.2 TransectsatOptimizedLocations............................... 47 4.5 MeasuringLineFeatureChange ........................................ 51 4.5.1 ShorelineChange................................................ 52 4.6 MappingLocationandChangeofBuiltStructures..................... 55 4.7 DerivedParameters:StormVulnerabilityScale........................ 59 References...................................................................... 61 5 VolumeAnalysis .............................................................. 63 5.1 DEMDifferencing ....................................................... 63 5.2 LandscapeSegmentationintoBins...................................... 64 5.2.1 Long-ShorePartitioning......................................... 64 5.2.2 Cross-ShoreSegments........................................... 65 5.3 VolumeEstimationforSegments........................................ 67 5.4 VolumeChangeMetrics ................................................. 68 References...................................................................... 70 6 VisualizingCoastalChange ................................................. 71 6.1 ColorandReliefShading................................................ 71 6.2 PerspectiveViewsof3DSurfaces....................................... 74 6.3 ComparingMultipleSurfaces:MapSwipeand3DCross-Sections... 74 6.4 Animationsin2Dand3DSpace ........................................ 75 6.5 VisualizationwithSpace-TimeCube(STC)............................ 76 References...................................................................... 79 Appendix........................................................................... 81 1 SampleDatasets.......................................................... 81 2 ColorTables.............................................................. 82 Chapter 1 Introduction Management of highly dynamic coastal landscapes requires repeated mapping and analysis of observed changes. Modern mapping techniques such as lidar increased the frequency and level of detail in coastal surveys and new methods were developed to extract valuable information from these data using Geographic InformationSystems.Inthischapterwediscussmappingofcoastalchange,on-line dataresources,andthebasicsofinstallationandworkingwithopensourceGRASS (GeographicalResourcesAnalysisSupportSystem)GISusedinthisbook. 1.1 MappingCoastalTerrain Change The present day coastal landscape is the result of complex interactions between naturalprocessesandanthropogenicactivities.Rapidurbandevelopmentcombined with increased shore erosion and severe storm impacts create new challenges for coastal management (Fig. 1.1). Quantification, modeling, and visualization of short term evolution of coastal systems is needed to better understand the impactsofnaturalprocessesandanthropogenicinterventions.Identificationofareas susceptibletohighratesoferosion,accuratemappingofelevationandsandvolume change and assessment of coastal vulnerability due to storm surge is critical for responsiblecoastalplanningandmanagement(Stockdonetal.2007). Numerousstudieshavedemonstratedadvantagesoflidarsurveysforassessment of shoreline and dune erosion (Burroughs and Tebbens 2008; Overton et al. 2006; Sallenger Jr et al. 2003; Stockdon et al. 2002). Lidar-based, bare earth Digital Elevation Models (DEMs) have been widely used for quantification of beach and dune volume change (Mitasova et al. 2004; Overton et al. 2006; White and Wang 2003),includingassessmentofmajorstormandhurricaneimpacts(Sallengeretal. 2006). The high density of lidar data points and near-annual frequency of coastal mapping in some regions provide time series of elevation data that can be used ©TheAuthor(s)2014 1 E.Hardinetal.,GIS-basedAnalysisofCoastalLidarTime-Series,SpringerBriefs inComputerScience,DOI10.1007/978-1-4939-1835-5__1 2 1 Introduction Fig.1.1 CoastalmanagementchallengesonNorthCarolinaOuterBanks:(a)stormimpactsin Rodanthe(HurricaneSandy,NCDOT2012);(b)beacherosioninNagsHead(HurricaneIsabel, USGS2003);(c)sandtransportthreatenshomesandinfrastructure(Nor’easterAthena,NCDOT 2012) to extract new information about spatial patterns of coastal dynamics using raster andfeature-basedtechniques.Thechangesinlidartechnologyoverthepastdecade produceddatasetswithdifferentaccuracies,scanningpatterns,andpointdensities. For this reason, geospatial analysis, when applied to multi-year lidar time series, also needs to address the issues of accurate data integration and computation of a consistent set of elevation models. Advanced three-dimensional Geographic Information Systems (GIS) provide a means for efficient integration of these new types of measurements. Once this integration is complete, GIS can be used to perform a wide range of sophisticated analyses and visualizations (Mitasova et al. 2011). This book explains both the necessary preprocessing and the subsequent analysis accompanied by step by step instructions and scripts applied to data sets fromtheNorthCarolinacoast. Lidar data and imagery for the coastal United States can be downloaded from the“DigitalCoast”,aNationalOceanicandAtmosphericAdministrationoperated website(NationalOceanicandAtmosphericAdministrationCoastalServicesCen- ter2010).Thewebsiteprovidestoolsforsearchingandpre-processingofdata,such ascoordinatetransformationandgridding.Italsoallowsuserstoselectawiderange ofdatatypesandformats,suchasallreturn,firstreturnorbaregroundpointsinthe las/formatoranascii/textfile.Inthisbook,weusedataforthecoastofNorth 1.2 GRASSGISandSampleDataSet 3 Carolina (NC) downloaded from the “Digital Coast”. Additional data, including extensivecollectionsofaerialimageryforNCareavailablefromtheNCDepartment ofTransportation(NCDOT).HighaccuracyNCDOTbenchmarksmeasuredalong the centerline of the highway NC-12 can be downloaded at http://www.obtf.org/ NC12Alignment/NC12.htm.Thesebenchmarkscanbeusedtoidentifyandreduce systematicerrorinthelidar. 1.2 GRASSGIS and SampleDataSet The examples in this book process and analyze coastal lidar time series using the Geographic Resources Analysis and Support System (GRASS)—the free and open source GIS, specifically the GRASS7.0 release. The software is available to downloadforfreefromhttp://grass.osgeo.org/.Theeasiesttostartwitharethepre- compiled binary packages with installers available for Linux, MS-Windows, and Mac OS X. The basic terminology and data organization in GRASS7 is described in the GRASS GIS Quickstart document (http://grass.osgeo.org/grass71/manuals/ helptext.html). AfterinstallingtheGRASSsoftwarecreateadirectorywhereyouwillstoreall GRASS data. Name this directory grassdata/. This directory is often referred to as GIS data directory or GISDBASE. Within GISDBASE, GRASS data are organizedintoprojectscalledLOCATIONS,whicharedefinedbytheircoordinate system and spatial extent. When GRASS is started for the first time, you will be provided an option to navigate to and choose to work within an existing LOCATION,ordefineanewLOCATIONusingtheLocationwizard.LOCATIONS aresubdividedintoMAPSETS,whichareusedtoorganizedataforsub-projectsor fordifferentusers.EachLOCATIONhasaMAPSETcalledPERMANENTwhich is used for storing the coordinate system information and baseline geospatial data forthegivenproject. Youcanfindalldatasetsusedinthisbookathttp://geospatial.ncsu.edu/osgeorel/ data.html. Before starting GRASS, download the data set northcarolina_ coast_spm.zip and unpack it in your grassdata/ directory. The data set is provided as a LOCATION which includes North Carolina boundaries in its PERMANENTMAPSETandaNagsHead_series/MAPSETwithtimeseries of lidar-derived DEMs. The DEMs represent coastal topography along 1km of shoreline at 1m resolution in the town of Nags Head, NC, next to Jockeys Ridge State Park (Fig.1.2). The time series contains series of time snapshots starting in 1996 (Mitasova et al. 2010). Additional data used in this book can also be downloaded from this website. These include the point cloud series for Jockey’s ridge and Rodanthe (JR_*_lidar.txt and R_*_lidar.txt respectively), theroadcenterline(road_centerline.txt),andtheroadsurfacepointcloud (DARE_BE*.txt).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.