de Gruyter Textbook Helmberg · Getting Acquainted with Fractals Gilbert Helmberg Getting Acquainted with Fractals ≥ Walter de Gruyter Berlin · New York Gilbert Helmberg Kalkofenweg 5 6020 Innsbruck Austria (cid:2)(cid:2)Printedonacid-freepaperwhichfallswithintheguidelines oftheANSItoensurepermanenceanddurability. LibraryofCongressCataloging-in-PublicationData Helmberg,Gilbert. Gettingacquaintedwithfractals/byGilbertHelmberg. p.cm. Includesbibliographicalreferences. ISBN978-3-11-019092-2(hardcover:alk.paper) 1.Fractals. I.Title. QA614.86.H45 2007 5141.742(cid:2)dc22 2006102211 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.d-nb.de. ISBN 978-3-11-019092-2 (cid:2) Copyright2007byWalterdeGruyterGmbH&Co.KG,10785Berlin,Germany. All rights reserved, including those of translation into foreign languages. No part of this book maybereproducedinanyformorbyanymeans,electronicormechanical,includingphotocopy, recording, orany information storage andretrieval system, without permissionin writing from thepublisher. PrintedinGermany. Coverdesign:(cid:3)malsy,kommunikationundgestaltung,Willich. Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen. Preface Tosomeone,havingheardaboutfractalsbutnotyetacquaintedwiththem,theymight seemtoberegardedwithsuspicion: Howcould“real”objects–accessiblebysightand not onlybythought –bereplicasofarbitrarilysmall partsofthemselves? Howcould a continuous path which runsalmost everywhere parallel tosealevel climbup toany height? Howcouldacontinuouscurvepassthrougheverypointofasquare? Gettingacquaintedwithfractalsopensaglimpseintoaworldofwonders,butthese wonders are strongly supported by a frame of serious mathematics in which various of its branches play together: geometry, analysis, linear algebra, topology, measure theory,functionsofcomplexvariables,algebra,... . Ihavetriedtodojusticetobothaspects: thefascinationofgeometricobjectsaswell as the serious mathematical background – as far as an advanced undergraduate level. At some points, where the technicalities would transgress this level, I have at least indicatedwhereaninterestedreadercouldfindthewholestory. Ihopethepresentation adds something worthwhile to the many remarkable books on this topic which also leadmuchfartherintotheworldoffractals. Thesebooksalsocontainsomethingwhichareadermightmissinthepresentone: I havechosentoavoidthepossibilityoffrustratingthereaderbyexpectinghimtodoex- ercises;hewillfindtheminabundanceinthementionedbooks(e.g.[Barnsley,1988], [Falconer,1990]) if he wants to. However, it is at least my intention to make acces- sible – via the internet address http://techmath.uibk.ac.at/helmberg– the programs producing the illustrations, thus enabling the reader to create and play withfractalsaccordingtohisowntaste. MythanksareduetothedeGruyterPublishingCompany,inparticulartoDr.Plato, fortheirinterestinandsupportofthisbookproject. Myfirstbookhasbeendedicated to my parents, my wife, and my two eldest children, but there are more people who meanverymuchtome. Thereforethisbookisdedicated toChri,Moni,andMui. Innsbruck,Cavalese,August2006 GilbertHelmberg Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Fractalsanddimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Thegameofdeletingandreplacing . . . . . . . . . . . . . . . . . . . . 1 1.2 Thebox-countingdimension . . . . . . . . . . . . . . . . . . . . . . . 50 1.3 TheHAUSDORFF dimension . . . . . . . . . . . . . . . . . . . . . . . . 55 2 Iterativefunctionsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.1 Thespaceofcompactsubsetsofacompletemetricspace . . . . . . . . 63 2.2 Contractionsinacompletemetricspace . . . . . . . . . . . . . . . . . 70 2.3 AffineiterativefunctionsystemsinR2 . . . . . . . . . . . . . . . . . . 74 3 Iterationofcomplexpolynomials . . . . . . . . . . . . . . . . . . . . . . . 109 3.1 GeneraltheoryofJULIA sets . . . . . . . . . . . . . . . . . . . . . . . 111 3.2 JULIAsetsforquadraticpolynomials . . . . . . . . . . . . . . . . . . . 121 3.3 TheMANDELBROT set. . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.4 GenerationofJULIA sets. . . . . . . . . . . . . . . . . . . . . . . . . . 150 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Listofsymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Contents(detailed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 1 Fractals and dimension 1.1 The game of deleting and replacing The word “fractal” comes fromthe Latinword “frangere” (with past participle “frac- tus”) which means “to break”, “to destroy”. Let us begin with exploring how such a destructionprocessmaystillgeneratesomenewmathematicalobjectdisplayinginter- estingfeatures. 1.1.1 The CANTOR set Letusdefineanoperationf (suchanoperationiscommonlycalledanoperator)work- ing on any closed segment [a,b] ⊂ R (= the real line) by deleting the open middle third ]a+ b−a,b− b−a[,andletusdenotetheinterval[0,1]⊂RbyA . Application 3 3 (0) off toA deletestheinterval ]1,2[ andproducesaclosedset (0) 3 3 (cid:2) (cid:3) (cid:2) (cid:3) A = 0,1 ∪ 2,1 , (1) 3 3 the union of the two disjoint closed intervals A = [0,1] and A = [2,1], each of 0 3 1 3 whichhaslength 1. Ifweapplyf nowtoA wegetaclosedset 3 (1) A = f(A ) = f(f(A )) ⊂ A (2) (1) (0) (1) consisting of four disjoint intervals A , A , A , A of length 1 = 1 each. 0,0 0,1 1,0 1,1 9 32 Since we want to continue the application of f, in order toavoid theclumsy notation f(f(...))letususethenotation f(0)(A) := A, f(1)(A) := f(A), f(k+1)(A) := f(f(k)(A)). (Weshall call the indexk the levelof the construction.) Applied to our intervalA (0) thisallowsustodefineasequenceofclosedsetsA (1≤k <∞)by (k) A := f(k)(A ) (k) (0) satisfying A ⊃ A ⊃ ··· ⊃ A ⊃ A ⊃ ··· . (1.1) (0) (1) (k) (k+1) The set A is the union of 2k closed intervals A (j ∈ {0,1}, 1 ≤ i ≤ k) of (k) j1,...,jk i length 1 each. Asequence{A }∞ aswellbehavedasindicatedby(1.1)raisesthe 3k (k) k=1 question whether there exists, in some sense, a limit set A. Indeed, by a well known
Description: