ebook img

Getting acquainted with fractals PDF

189 Pages·2007·1.68 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Getting acquainted with fractals

de Gruyter Textbook Helmberg · Getting Acquainted with Fractals Gilbert Helmberg Getting Acquainted with Fractals ≥ Walter de Gruyter Berlin · New York Gilbert Helmberg Kalkofenweg 5 6020 Innsbruck Austria (cid:2)(cid:2)Printedonacid-freepaperwhichfallswithintheguidelines oftheANSItoensurepermanenceanddurability. LibraryofCongressCataloging-in-PublicationData Helmberg,Gilbert. Gettingacquaintedwithfractals/byGilbertHelmberg. p.cm. Includesbibliographicalreferences. ISBN978-3-11-019092-2(hardcover:alk.paper) 1.Fractals. I.Title. QA614.86.H45 2007 5141.742(cid:2)dc22 2006102211 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.d-nb.de. ISBN 978-3-11-019092-2 (cid:2) Copyright2007byWalterdeGruyterGmbH&Co.KG,10785Berlin,Germany. All rights reserved, including those of translation into foreign languages. No part of this book maybereproducedinanyformorbyanymeans,electronicormechanical,includingphotocopy, recording, orany information storage andretrieval system, without permissionin writing from thepublisher. PrintedinGermany. Coverdesign:(cid:3)malsy,kommunikationundgestaltung,Willich. Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen. Preface Tosomeone,havingheardaboutfractalsbutnotyetacquaintedwiththem,theymight seemtoberegardedwithsuspicion: Howcould“real”objects–accessiblebysightand not onlybythought –bereplicasofarbitrarilysmall partsofthemselves? Howcould a continuous path which runsalmost everywhere parallel tosealevel climbup toany height? Howcouldacontinuouscurvepassthrougheverypointofasquare? Gettingacquaintedwithfractalsopensaglimpseintoaworldofwonders,butthese wonders are strongly supported by a frame of serious mathematics in which various of its branches play together: geometry, analysis, linear algebra, topology, measure theory,functionsofcomplexvariables,algebra,... . Ihavetriedtodojusticetobothaspects: thefascinationofgeometricobjectsaswell as the serious mathematical background – as far as an advanced undergraduate level. At some points, where the technicalities would transgress this level, I have at least indicatedwhereaninterestedreadercouldfindthewholestory. Ihopethepresentation adds something worthwhile to the many remarkable books on this topic which also leadmuchfartherintotheworldoffractals. Thesebooksalsocontainsomethingwhichareadermightmissinthepresentone: I havechosentoavoidthepossibilityoffrustratingthereaderbyexpectinghimtodoex- ercises;hewillfindtheminabundanceinthementionedbooks(e.g.[Barnsley,1988], [Falconer,1990]) if he wants to. However, it is at least my intention to make acces- sible – via the internet address http://techmath.uibk.ac.at/helmberg– the programs producing the illustrations, thus enabling the reader to create and play withfractalsaccordingtohisowntaste. MythanksareduetothedeGruyterPublishingCompany,inparticulartoDr.Plato, fortheirinterestinandsupportofthisbookproject. Myfirstbookhasbeendedicated to my parents, my wife, and my two eldest children, but there are more people who meanverymuchtome. Thereforethisbookisdedicated toChri,Moni,andMui. Innsbruck,Cavalese,August2006 GilbertHelmberg Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Fractalsanddimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Thegameofdeletingandreplacing . . . . . . . . . . . . . . . . . . . . 1 1.2 Thebox-countingdimension . . . . . . . . . . . . . . . . . . . . . . . 50 1.3 TheHAUSDORFF dimension . . . . . . . . . . . . . . . . . . . . . . . . 55 2 Iterativefunctionsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.1 Thespaceofcompactsubsetsofacompletemetricspace . . . . . . . . 63 2.2 Contractionsinacompletemetricspace . . . . . . . . . . . . . . . . . 70 2.3 AffineiterativefunctionsystemsinR2 . . . . . . . . . . . . . . . . . . 74 3 Iterationofcomplexpolynomials . . . . . . . . . . . . . . . . . . . . . . . 109 3.1 GeneraltheoryofJULIA sets . . . . . . . . . . . . . . . . . . . . . . . 111 3.2 JULIAsetsforquadraticpolynomials . . . . . . . . . . . . . . . . . . . 121 3.3 TheMANDELBROT set. . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.4 GenerationofJULIA sets. . . . . . . . . . . . . . . . . . . . . . . . . . 150 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Listofsymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Contents(detailed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 1 Fractals and dimension 1.1 The game of deleting and replacing The word “fractal” comes fromthe Latinword “frangere” (with past participle “frac- tus”) which means “to break”, “to destroy”. Let us begin with exploring how such a destructionprocessmaystillgeneratesomenewmathematicalobjectdisplayinginter- estingfeatures. 1.1.1 The CANTOR set Letusdefineanoperationf (suchanoperationiscommonlycalledanoperator)work- ing on any closed segment [a,b] ⊂ R (= the real line) by deleting the open middle third ]a+ b−a,b− b−a[,andletusdenotetheinterval[0,1]⊂RbyA . Application 3 3 (0) off toA deletestheinterval ]1,2[ andproducesaclosedset (0) 3 3 (cid:2) (cid:3) (cid:2) (cid:3) A = 0,1 ∪ 2,1 , (1) 3 3 the union of the two disjoint closed intervals A = [0,1] and A = [2,1], each of 0 3 1 3 whichhaslength 1. Ifweapplyf nowtoA wegetaclosedset 3 (1) A = f(A ) = f(f(A )) ⊂ A (2) (1) (0) (1) consisting of four disjoint intervals A , A , A , A of length 1 = 1 each. 0,0 0,1 1,0 1,1 9 32 Since we want to continue the application of f, in order toavoid theclumsy notation f(f(...))letususethenotation f(0)(A) := A, f(1)(A) := f(A), f(k+1)(A) := f(f(k)(A)). (Weshall call the indexk the levelof the construction.) Applied to our intervalA (0) thisallowsustodefineasequenceofclosedsetsA (1≤k <∞)by (k) A := f(k)(A ) (k) (0) satisfying A ⊃ A ⊃ ··· ⊃ A ⊃ A ⊃ ··· . (1.1) (0) (1) (k) (k+1) The set A is the union of 2k closed intervals A (j ∈ {0,1}, 1 ≤ i ≤ k) of (k) j1,...,jk i length 1 each. Asequence{A }∞ aswellbehavedasindicatedby(1.1)raisesthe 3k (k) k=1 question whether there exists, in some sense, a limit set A. Indeed, by a well known

Description:
The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.