ebook img

Germ cell development in the postnatal testis: the key to prevent malignancy in cryptorchidism? PDF

1.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Germ cell development in the postnatal testis: the key to prevent malignancy in cryptorchidism?

REVIEWARTICLE published:03January2013 doi:10.3389/fendo.2012.00176 Germ cell development in the postnatal testis: the key to prevent malignancy in cryptorchidism? JohnM.Hutson1*,RuiliLi1,BridgetR.Southwell2,BodilL.Petersen3,JorgenThorup4 andDinaCortes5 1DepartmentofUrology,RoyalChildren’sHospital,Parkville,VIC,Australia 2FDouglasStephens,SurgicalResearchGroup,MurdochChildrensResearchInstitute,Melbourne,VIC,Australia 3DepartmentofPathology,UniversityofCopenhagen,Copenhagen,Denmark 4DepartmentofPaediatricSurgeryandPathology,Rigshospitalet,FacultyofHealthScience,UniversityofCopenhagen,Copenhagen,Denmark 5DepartmentofPaediatrics,HvidovreHospital,FacultyofHealthScience,UniversityofCopenhagen,Copenhagen,Denmark Editedby: To permit normal postnatal germ cell development, the mammalian testis undergoes a AlbertoFerlin,UniversityofPadova, complex,multi-stagedprocessofdescenttothescrotum.Failureofanypartofthisprocess Italy leads to congenital cryptorchidism, wherein the malpositioned testis finds itself at the Reviewedby: wrongtemperatureafterbirth,whichleadstosecondarygermcelllossandlaterinfertility DanielaPasquali,SecondaUniversità and risk of cancer. Recent studies suggest that neonatal gonocytes transform into the degliStudidiNapoli,Italy LucioGnessi,UniversityofRomeLa putativespermatogenicstemcellsbetween3and9months,andthisinitialpostnatalstep Sapienza,Italy isderangedincryptorchidtestes.Inaddition,itisthoughttheabnormalityhightemperature *Correspondence: mayalsoimpairapoptosisofremaininggonocytes,allowingsometopersisttobecomethe JohnM.Hutson,Departmentof possiblesourceofcarcinomainsituandmalignancyafterpuberty.Thebiologyofpostnatal Urology,RoyalChildren’sHospital, germ cell development is of intense interest, as it is likely to be the key to the optimal Parkville,VIC3052,Australia. e-mail:[email protected] timingfororchidopexy. Keywords:germcell,gonocyte,spermatogium,testis,cryptorchidism,orchidopexy INTRODUCTION examine the evidence for early orchidopexy to try and prevent The right way to treat undescended testes (UDT) remains to be abnormalgermcelldevelopment. solved. Although much is known about the development of the testes and sperm cells, there is a missing link in our knowl- NORMALEMBRYOLOGYANDPOSTNATALDEVELOPMENT edge. It is not known when and how the progenitors of germ INHUMANS cells transform from neonatal gonocytes into spermatogonia or At 5 weeks of gestation, embryonic gonocytes migrate from spermaticstemcells.Recentresearchsuggeststhatacriticalstage the umbilical stalk into the ambisexual gonad. Human sexual of sperm cell development may occur in the early postnatal development then begins at 7–8 weeks’gestation when the SRY period. Germ cell development has been studied extensively in (sex-determiningregionY)geneinitiatestesticulardifferentiation the fetus and at puberty, but not in this postnatal window. We with Sertoli cell development (Sinclair, 1994). Cords of Sertoli will propose in this review that knowledge about early postna- cells surround the newly arrived germ cells and the interstitial talgermcelldevelopmentiscrucialfortheoptimalmanagement cells form Leydig cells and peritubular myoid cells. Müllerian- ofUDT. inhibiting substance (or anti-Müllerian hormone) (MIS/AMH) Undescended testes, or cryptorchidism, is a major problem andtestosteronesynthesisbySertolicellsandLeydigcells,respec- occurring in about 5% of neonatal boys, with surgery to pull tively, trigger regression of Müllerian ducts and preservation of thetestesdowntothescrotum(orchidopexy), currentlyrecom- Wolffian ducts which form epididymis, vas, and seminal vesi- mendedbetween6and12–18months(Ritzenetal.,2007;Hutson cles(Wilsonetal.,1981;LeeandDonahoe,1993;Figure1). The etal.,2010).Ithasbeenpreviouslyshowninnumerousstudiesthat intra-abdominalfetaltestisdescendstothescrotuminacomplex, cryptorchidisminthepastwasassociatedwitha30–60%riskof two-stage process that in humans is complete at birth, while in infertilityorlackofgermcells,anda5-to10-foldincreaseintestic- rodentsthesecondphaseoccursinthefirstweekafterbirth(Hut- ularmalignancy.Crucialstepsinmaturationofgonocytesintothe son etal.,1997). The regulation of this two-stage process is not spermcelllineageandofspermcelldevelopmentcouldbeoccur- thesubjectofthisreview,butinterestedreadersshouldseesome ringinthisearlypostnatalperiodandcouldbedependentonlow recent reviews (Ivell and Hartung, 2003; Adham and Agoulnik, temperaturepresentinthescrotumbutlackinginUDT.Inaddi- 2004;AmannandVeeramachaneni,2007;Bayetal.,2011). tion,massivecelldeathshouldoccurinnon-maturinggonocytes, Inbabyboys,thetemperatureoftheintra-scrotaltestesdrops ◦ clearingthetestisofanyundifferentiated,pluripotentialneonatal to 33 C at birth, with all the testicular enzyme systems read- germcells,aspersistingcellscouldgoontoundergocelldivision justingpresumablywithinafewweekstothisnewenvironment and become cancerous. The timing of surgery for orchidopexy (Zorgniotti, 1991). Between 2 and 4 months of age pituitary aims to prevent these problems but lacks scientific evidence. In gonadotropins stimulate a sudden increase in testosterone pro- thisreview,weexaminetheevidenceforearlypostnatalgermcell duction which peaks at about 3–6 months, before it wanes and developmenttodeterminewhatcontrolsthesestepsandalsoto becomesalmostnegligibleuntiltheonsetof puberty. Thisbrief www.frontiersin.org January2013|Volume3|Article176|1 “fendo-03-00176” — 2012/12/31 — 11:26 — page 1 — #1 Hutsonetal. Postnatalgermcelldevelopment FIGURE1|Testiculardescent.(A)Cranialsuspensoryligament(CSL) duringmidgestationalgrowth(8–15weeks).(C)Calcitoningene-related andgubernaculum(G)holdthetestis.Testosterone(T)andMIS/AMHact peptide(CGRP)releasedbythegenitofemoralnerve,andunderthe onWolffianduct(WD)andMüllerianduct(MD).(B)Insulin3(Insl3)causes controloftestosterone,steersthemigratinggubernaculumtothe thegubernacularswellingreactionthatholdsthetestisnearthegroin scrotum. surgeofgonadotropinsandandrogensisknownas“mini-puberty” others have suggested a secondary hormonal malfunction, such (Jobetal.,1988; HadziselimovicandZivkovic,2007). Asandro- a hypothalamic–pituitary axis deficiency (Hadziselimovic and genlevelssubsidethereisasurgeinproductionofMIS/AMHby Zivkovic, 2007) or a placental failure to produce chorionic Sertolicells,whichpeaksat6–12months,butremainshighthen gonadotropin (Heyns and Hutson, 1995). Based on twin stud- untilpubertywhenserumlevelsfall(Bakeretal.,1990;Yamanaka ies,ithasalsobeensuggestedthatriskfactorsshouldbesoughtin etal.,1991;Aksglaedeetal.,2010;Figure2). the intrauterine environment and the maternal genes. However, another possibility first suggested in the eighteenth and nine- ABNORMALPOSTNATALDEVELOPMENTINUDTIN teenth centuries, was that there was an anatomical defect in the HUMANS mechanismofdescent.Withtheestablishmentofendocrinology Failureof thefirstorsecondphaseof testiculardescentleadsto in the early twentieth century, these anatomical concepts were congenital cryptorchidism. The causes of UDT remain largely mostlyreplacedwithexplanationsofhormonaldysfunction,such unknown with some authors suggesting a primary testicu- asdescribedabove(HeynsandHutson,1995).However,ourown lar hormonal malfunction (Heyns and Hutson, 1995), while research over the last 25 years, along with others, has suggested FIGURE2|“Mini-puberty,”withtestosterone(T)andMIS/AMH formabout3–4years.Afteraperiodofquiescence,spermatidsformabout10 secretedafterbirth.Neonatalgonocytesmatureintoadultdark yearsofage,withtheonsetonspermatogenesis.Undescendedtestis(UDT) spermatogoniabetween3and9monthsofage,andprimaryspermatocytes interfereswiththefirststep. FrontiersinEndocrinology|CancerEndocrinology January2013|Volume3|Article176|2 “fendo-03-00176” — 2012/12/31 — 11:26 — page 2 — #2 Hutsonetal. Postnatalgermcelldevelopment thatanatomicalfaultsmaybeacommoncauseofcryptorchidism to prevent development of cancer in men (Gracia etal., 2000). (Backhouse,1964).Cryptorchidismisassociatedwithothercon- However, the age for orchidopexy is now much younger, and it genital abnormalities in less than 20% of the cases, but when remainstobeseenwhetherthiswillalteroutcomesinadulthood. presentthenmostareoftenrelatedtoabnormalitiesof themid- Recentstudiesactuallyindicatethatoperationforcryptorchidism lineandthecaudaldevelopmentfieldofthebody(Cortes,1998; at a young age lowers the risk of testicular cancer in adulthood Jensenetal.,2010;Thorupetal.,2010). Twokeyobservationsin (Petterssonetal.,2007). favor of this view are the failure to document convincing pri- Meanwhile,inpediatrics,itfirstbecameapparentinthe1970s maryhormonaldefects,aswellastherealizationthatthesecond that degeneration of the UDT was occurring in early childhood phase of descent is a very complex anatomical process, that is (Mengeletal.,1974).Initiallyitwasnotedthattherewasmacro- likelytobepronetosubtleanomalies(AmannandVeeramacha- scopicatrophyofthetestisinearlyprimaryschoolyearsleading neni,2007;Thorupetal.,2012).Thisisfurthersupportedbythe to the view that maybe orchidopexy should be done in 5- to factthattheanomalymostoftenoccursunilaterally,andincases 6-year-oldboysratherthanat10–15years,basedontheassump- whereassociatedWolffianductand/oruretericbudmalformations tionthatthismightpreventtheobviouslyvisibledevelopmentof are present, these are predominantly found ipsilaterally (Cortes atrophy.Duringthe1970sandearly1980stherewashistological etal.,1998a). evidenceaccumulatingofdegenerationvisibleinboysof2years Ifsomethinggoeswrongwithmigrationofthegubernaculum of age with UDT, leading to the recommendation in pediatric fromtheexternalinguinalringinthegroinacrossthepubisand surgerythatorchidopexymightbeoptimallydonein2-year-old intothescrotum,theinitiallynormalpostnataltestisisretained boys (Hadziselimovic etal., 1975). It was then appreciated that deeptotheinguinalfatpad,whichisaneffectiveinsulator,keep- there were signs of early degeneration in the testis on electron ◦ ing the UDT at 34–37 C (Mieusset etal.,1993), rather than the microscopy at about 12 months of age (Hadziselimovic, 1985; ◦ normalscrotaltemperatureof33 C,andthisisbelievedtotrigger Figure3). theprogressivepostnataltesticulardysfunction, asthepostnatal Furthermore,itwasreportedthatallUDTharboredgermcells ◦ testis function is only optimal at 33 C (Zorgniotti, 1991). The atthetimeofbirth,butthenumberofgermcellswasdecreasedin exquisitetemperaturesensitivityof thetestishasbeenwelldoc- aboutone-fourthof cryptorchidnewborns(Cortes,1998). Lack umentedforalongtime,butiscurrentlynotafashionablearea of germ cells has been reported from 12, and especially from of research in this era of molecular biology. However, the phe- 18monthsofage,andthereforesurgeryhasbeenrecommended nomenonhasbeensolidlyprovendespitethegeneticregulationof before12or18monthsofage(Ritzenetal.,2007). itnotbeingfullydescribed.Thisabnormalpostnataldevelopment Recentstudieshaveimplicatedtheveryfirstphases(i.e.,inthe inthetestisalsoleadstoinhibitedpostnatalandrogenproduction first year) of postnatal germ cell development in the etiology of (Raivioetal.,2003)andMIS/AMHproductionat6–12monthsof the subsequent infertility and risk of malignancy. However, we age(Yamanakaetal.,1991). first need to describe normal germ cell development so that the The net effect of cryptorchidism is germ cell loss, leading effectsofcryptorchidismcanbeunderstoodincontext. to infertility (Mengel etal., 1974; Hadziselimovic, 1985). This has been well described in many long-term outcome studies in NORMALGERMCELLDEVELOPMENT men with a previous history of cryptorchidism in childhood Around4–6weeksof gestationwithintheembryonicurogenital (Cortes, 1998; Gracia etal., 2000; Cortes etal., 2001; Vincardi ridge the primitive gonad forms on the anteromedial surface of etal., 2001). However, the cause for this germ cell loss and the middle kidney or mesonephros. Primordial germ cells form its timing have remained elusive until relatively recently. In the from endodermal cells in the caudal edge of the yolk sac stalk, 1950s,orchidopexywasrecommendedinboysaged10–15years and then migrate into the embryonic celom around the wall of if the cryptorchid testes failed to descend spontaneously into the midgut and into the urogenital ridge, eventually colonizing the scrotum at the onset of puberty (Gross and Jewett, 1956; the ambisexual gonad and differentiating into gonocytes. By 22 Vincardi etal., 2001). This recommendation was based on the weeks of gestation, these primitive germ cells mature into fetal clearobservationthatasignificantnumberof cryptorchidtestes spermatogonia(Hadziselimovic,1983).Mesenchymalcellsinthe descendedspontaneouslyatpuberty.Inaddition,itwasassumed 7-to8-weekambisexualgonadsurroundingthearrivinggermcells that germ cell development was totally quiescent in childhood. form the Sertoli cells with the onset of sexual differentiation to Indeed, it was thought that the testis was effectively in “sus- createthetesticularcords,insideabasementmembrane.Outside pended animation” until the onset of spermatogenesis in early the cords some mesenchymal cells form Leydig cells and begin puberty. hormonesynthesistoproduceandrogenandinsulin-likehormone Current long-term follow-up studies of men with a previous 3(INSL3),whileothersformintomyoepithelialcellsaroundthe historyofcryptorchidismshowa5-to10-foldincreaseinmalig- cords. nancyrisk(Whitaker,1988;WoodandElder,2009). However,it At birth, the fetal spermatogonia or neonatal gonocytes are iseasytoforgetthatbecauseof theverylonglag-time(i.e., 30– located in the center of the spermatic cords. Throughout child- 40years)betweeninterventionandmeasurementoftheoutcome, hooditappearsthatthegermcellsremainedinthecenterofthe in this case development of testicular malignancy, that the age cords,andseemedtobein“hibernation”untiltheonsetofsper- of orchidopexyinmostof thesestudiesinthecurrentliterature matogenesisatpuberty, astherewaslittlehistologicalchangein is about 5–15 years of age. This has led to the widespread view theirappearanceorlocation.However,inrecentyears,itbecame inadultendocrinologyandoncologythatorchidopexyisunable apparent that by 3–4 years of age the cell in the center of the www.frontiersin.org January2013|Volume3|Article176|3 “fendo-03-00176” — 2012/12/31 — 11:26 — page 3 — #3 Hutsonetal. Postnatalgermcelldevelopment have been classified as dark type-A (Ad), pale type-A (Ap), and type-B.Ad-spermatogoniahavenucleishowingahomogeneous, darkstainablechromatinandoneormoreclearcavitiesofvacuole likeappearance(Clermont,1963). Thetype-Aspermatogonium hasbecomethelikelystemcellofspermatogenesis(deRooijand Russell, 2000; Drumond etal., 2001; Biers and Malone, 2010). Interestingly not all neonatal gonocytes transform into type-A spermatogonia, so that by 1–2 years of age the total germ cell numberislessthanhalfthatatbirth(Hadziselimovic,1983).The remaining gonocytes are thought to undergo apoptosis, or pro- gramed cell death, so that by 2 years of age there are none left in the testis (Huff etal.,2001b). This process can be seen read- ily in the postnatal rat testis, as signs of apoptosis are rare until day3,butbyday4analysisshowsthatone-thirdofthemarelost (Roosen-RungeandLeik,2000). THESPERMATOGENICSTEMCELL Asneonatalgonocytesseemtodifferentiateintounipotentstem cellsforsubsequentspermatogenesis,theirchangeinappearance, locationwithinthecord,andfunctionsuggestdramaticchangesin germcellularphysiology.Thesechangesareregulatedbyaprecisely coordinatedexpressionofkeyproteins,someofwhichareknown. Inearlyembryos,germcellsandpluripotentembryonicstem cellscanformanytypeofcell.However,asdevelopmentproceeds, theabilityofgermcellstoformdifferentcellsbecomesrestricted. In testes a subpopulation of germ cells retain the ability to dif- ferentiate, butonlyasunipotentspermatogenicstemcell(SSCs; Hofmannetal.,2005). HuckinsandOakberghaveproposedawidelyacceptedmodel for spermatogenic development which is useful to describe here FIGURE3|Theageatwhichorchidopexyhasbeenadvocatedsincethe (Huckins,1971;Oakberg,1971;deRooijandRussell,2000).Inthis 1950s.ReproducedwithmodificationsfromHutsonandBeasley(1992). model,singletype-AspermatogoniaaretheputativeSSCs,which can self-renew, while paired type-A spermatogonia are differen- tiatingpaireddaughtercellsconnectedbyanintercellularbridge. testicularcordsisaprimaryspermatocyte,ratherthananeonatal Pairedtype-Aspermatogoniadivideintochainsof alignedcells, gonocyte(Hadziselimovic,1983). whichthenbecometypeA ,A ,A ,andthenA spermatogonia. 1 2 3 4 Recent studies show that the neonatal gonocyte migrates The latter cells (A ) divide to form intermediate spermatogonia 4 between the Sertoli cells to the periphery of the cord between andthetype-Bspermatogonia. Type-Bcellsthendividetoform 3and9monthsofage,or2and6daysofageinmice(Drumond primary spermatocytes that enter meiosis (Figure 4). All these etal.,2001;Huffetal.,2001b),whereitcomesincontactwiththe steps are regulated by growth factors from Sertoli and possibly basement membrane. These factors trigger transformation into theperitubularmyoidcells(Skinner,1991;Jegou,1993).Arecent type-Aspermatogonia,whichlinethebasementmembrane,dis- morphologicalstudy(Drumondetal.,2001)showedthatpostna- placingtheadjacentSertolicells.Theregulatoryfactorsinvolved taldevelopmentoftype-Aspermatogoniamayoccurmorerapidly inthistransformationaremostlyunknown(seebelow),although thaninmaturespermatogenesis. platelet-derivedgrowthfactors(PDGF)BandD,andalsoPDGF Thetype-AspermatogoniaandSSCshavebeenshownrecently receptor-beta (PDGFR-β) have been implicated (Basciani etal., toexpressarangeofdifferentmarkers(Figure5).Undifferentiated 2008, 2010). Inhibition of PDGFR-β tyrosine kinase activity in SSCsexpresstheintegrinsβ-1andα-6(Shinoharaetal.,1999),and thefirstweekpostnatallyinamousecausesaseverereductionin thereceptorsforglial-derivedneurotrophicfactor(GDNF),such theproliferationofgonocytesandincreasestheirapoptosis(Bas- asGDNFfamilyreceptoralpha-1(GFRα-1)andreceptortyrosine cianietal.,2008,2010).Type-Aspermatogoniamatureintotype-B kinase(RET)(deRooijandRussell,2000). Inadditionundiffer- spermatogonia,thenmigratebackintothecenterofcordagainby entiatedSSCsexpressZbtb-16(previouslyknownasPlzf; Buaas 3–4years,tobecomeprimaryspermatocytes. etal.,2004;Costoyaetal.,2004).OnceSSCsstarttodifferentiate, Alongside these studies of early postnatal germ cell develop- theybeginexpressingarangeofdifferentmarkers,includingc-Kit, ment have been studies searching for the potential stem cell of thereceptorforstemcellfactor(Besmeretal.,1993;Yoshidaetal., spermatogenesis,withtheaimofusingthesestemcellsforrecol- 2006).TheyalsoexpressSohlh1andSohlh2,aswellasneurogenin onizingtheinfertiletestis(Brinster,2007;WaheebandHofmann, 3(Ballowetal.,2006;Filipponietal.,2007;Haoetal.,2008).Ascan 2011). Based on morphological criteria, human spermatogonia beseenfromthisbriefoverview,mostofwhatweknowaboutSSCs FrontiersinEndocrinology|CancerEndocrinology January2013|Volume3|Article176|4 “fendo-03-00176” — 2012/12/31 — 11:26 — page 4 — #4 Hutsonetal. Postnatalgermcelldevelopment FIGURE4|Postnatalgermcelldevelopmentinhumans.(A)Gonocytes ofgermcells/tubuleinanormaltestisandundescendedtestis(UDT)relative migratefromthecenterofthecordstothebasementmembranearound6 toageinyears.Notethenormalfallintotalnumbersbetweenbirthand2 months,andbecometype-Aspermatogonia.By3–4yearsofagethecenter years,butfailureofthistorecoverinUDT.Theshadedareashowsthenormal ofthecordsbecomesrecolonizedwithprimaryspermatocytes.(B)Numbers rangeandthedottedlinesshowtheaveragenumbers. FIGURE5|Germcelldevelopmentinthefirstweekpostnatallyintherat,showingthegermcellslabeledwithMVH(mousehomologofDrosophila Vasa),andtheSertolicellslabeledwithMIS/AMH(bar=10μm).(A)Day0,(B)Day4,(C)Day6,(D)Day10. www.frontiersin.org January2013|Volume3|Article176|5 “fendo-03-00176” — 2012/12/31 — 11:26 — page 5 — #5 Hutsonetal. Postnatalgermcelldevelopment comesfromstudiesofadultspermatogenesisorstemcellresearch, (HadziselimovicandHerzog,2001b). The degree of risk of sub- ratherthanadirectstudyof thetype-Aspermatogoniuminthe sequent infertility can be quantitated, as it is almost inevitable postnataltestis. if therearefewerthan1%of thenumberof spermatogoniaper tubularcross-section,seeninbiopsiesfromage-matchedcontrols ABNORMALGERMCELLDEVELOPMENT (Cortesetal.,1996). Undernormalphysiologicalcircumstances, All cryptorchid testes of newborns contain germ cells, although thesurgeof gonadotropinsandtestosterone, andpossiblyother in some testes the number is impaired compared to normal. as yet unknown hormones, occurs at 2–3 months of postnatal So significant deranged germ cell development in cryptorchid age. This hormonal surge stimulates the gonocytes in the testis testesprobablybeginspostnatally,exceptinthedysgenetictestis to develop into adult dark spermatogonia. In cryptorchidism in disorders of sex development (DSD). The first step to fail is there has been reported evidence for a beneficial role of adju- transformation of gonocytes into type-A spermatogonia, which vantgonadotropin-releasinghormonetoimprovefertilityinUDT is delayed or interrupted. Evidence for this disruption is found (BiersandMalone,2010).Ithasbeenquestionedasageneralrec- inthepersistenceoflargenumbersofgonocytesinthecenterof ommendation(Hutson,2010).Recentlytherehavebeendescribed thetesticularcordswellbeyond6monthsofage(Figure6),and differentgroupsofcryptorchidboys,andifthepatientsatthetime a decreased number of type-A spermatogonia (Hadziselimovic ofsurgeryhaveadecreasednumberofgermcellsand/orinhibinB etal.,1986; Huff etal.,1989,1991). Afterthefirstyearorsothe andnocompensatoryincreaseingonadotropins,thensupplemen- numberof spermatogoniadecrease, whilethosethatremainare taryhormonaltreatmentmaybeindicatedafterearlysurgeryfor gonocyteswithbizarrenuclei(Hadziselimovic,1983).By3–4years UDT(Thorupetal.,2012). Ithasbeensuggestedthatantisperm ofagetheabnormalityhasbecomeevenmoreobvious,withfailure antibodiesmaybeinvolvedinthegermcelllossincryptorchidism, ofprimaryspermatocytestoappear(Huffetal.,1989). butthereisnoevidenceforpostpubertalantibodiesafterprevious The abnormally high temperature of the cryptorchid human surgeryinchildhoodforcryptorchidism(Mirilasetal.,2003).All testisisconsideredbymostauthorstobethecauseof thisgerm thesestudiessuggestthatthepostpubertalpoorfertilityislikely cellmaldevelopment.Considerablestudieshavebeenperformed to be caused by an abnormally small pool of SSCs, the type- A invariousanimalmodelsshowingthatheatstressleadstoacom- spermatogonia. bination of both indirect and direct effects on the germ cells, Theriskofcanceraftercryptorchidismininfancyislesseasily causingimpairedtransformationandmaturationaswellasinhib- correlatedwithabnormalgermcelldevelopmentafterbirth.Ithas itedapoptosis.Thisthermalinjuryismediatedbyreactiveoxygen beenwelldescribedthattheriskof developingatesticulargerm speciesandcertainheat-shockproteins,whichdamagethegerm cellcancerisabout5-to10-foldhigherinmenwithaprevious cellsaswellasSertolicells(Setchell,1998; Zinietal.,1999; Ivell history of cryptorchidism compared with those with descended andHartung,2003). testisinchildhood(Chilversetal.,1986; Giwercmanetal.,1987; Defectivetransformationofgonocytesintotype-Adarksper- Moller etal.,1998; Wood and Elder,2009). Testicular germ cell matogonia between 3 and 9 months of age correlates with tumorsareextremelycommon,affecting1%ofyoungmen(Rorth abnormalspermcountsafterpuberty(HadziselimovicandHer- etal.,2000). zog, 2001a; Huff etal., 2001a). In cases of no adult dark The common precursor of these tumors is the premalignant spermatogonia, the age of orchidopexy has not affected a carcinomainsitu(CIS)cell,whichisproposedtobeafetalgerm poor result for spermatogenesis in adulthood, at least so far cellthatfailedtodifferentiate,andremains,dormantinthetestis until after puberty (Skakkebaek etal.,1982). The evidence sup- portingthisviewcomesfromthemanysimilaritiesbetweenCIS cells and fetal gonocytes, which share many markers and mor- phologicalcharacteristics(HolsteinandKorner,1974;Skakkebaek etal.,1982;Rorthetal.,2000;Rajpert-DeMeytsetal.,2003).CIS cellsmaywelloriginateduringfetaldevelopmentinDSD,where the germ cell physiology is deranged by the underlying genetic anomaly.Bycontrast,thisseemslessplausibleincryptorchidism if the maldescent is caused by extraneous mechanical defects. In cryptorchidism, therefore, the CIS cell may arise from the neonatalgonocytes,whichareabnormallyabundant. Thegono- cyteshavepluripotentstemcellproperties, whichif theypersist untilafterpuberty,withorwithoutmutation,maydevelopinto cancer. Carcinomainsitucellsaremorelikelytobepresentwherethere arespecificgeneticdefects,andtheremaybedevelopmentalarrest (Skakkebaeketal.,1987,1998;Honeckeretal.,2004).Expression FIGURE6|Abnormalpersistenceofgonocytesbeyond6monthsof profiles of CIS cells and embryonic stem cells are very similar, ageinaboywithcryptorchidism.ThegermcellsarelabeledwithMVH which supports the view of CIS being a multipotent stem cell (mousehomologofDrosophilaVasa),andtheSertolicellsarelabeledwith (Almstrupetal.,2004).Aunifyinghypothesishasbeenproposed MIS/AMH(bar=10μm). to link testicular maldevelopment, testicular cancer, low sperm FrontiersinEndocrinology|CancerEndocrinology January2013|Volume3|Article176|6 “fendo-03-00176” — 2012/12/31 — 11:26 — page 6 — #6 Hutsonetal. Postnatalgermcelldevelopment counts, and cryptorchidism, known as the testicular dysgenesis syndrome(TDS;Asklundetal.,2004). Carcinoma in situ is more common in men with previous cryptorchidism, and is documented in 2–3% of adult patients (Giwercman etal.,1987,1989). However, the prevalence of CIS ishigherinthosemenwithmacroscopictesticularatrophy(Har- landetal.,1998)orthosewithbilateralcryptorchidism(Swerdlow etal.,1997).Wherecryptorchidismisunilateral,thecontralateral descended testis has a slightly increased risk of cancer (Forman etal.,1994).Notsurprisingly,cancerriskisalsoincreasedwhere testeswereintra-abdominal,thegenitaliawereabnormalorthere wasaknownabnormalkaryotype(Cortesetal.,1999). Inapediatriccollectiveseriesofsixstudies,theriskofCISin 2800 boys with cryptorchidism was 0.36% only (Cortes, 1998). Whencomparedtohigherincidencedatafromadultsthesepedi- atric figures support the hypothesis that the characteristics of CIS cells and later testicular cancer develops over time, and are not present from fetal life. Generally CIS in pediatric series is described in later childhood (Cortes etal., 1999). However, in thispaperwepresenta12-month-oldboywithsuspectedCISin bilateral cryptorchid testes (Figure 7). It has to be emphasized thatpositiveimmunohistochemicalmarkersindicatingCISinthe adulttestisdonothavesuchpredictivevaluewhenappliedtothe childhoodcryptorchidtestis.Positivestainingbysuchmarkersof persistentfetalgermcellsisseeninalmosthalfofthecryptorchid testesofboysyoungerthan5years(Thorupetal.,2012).Presence ofplacentalalkalinephosphatase(PLAP)-positiveimmunohisto- chemicalstainedgonocytesinbilateralcryptorchidtestesofinfant boysindicatestheabilityofdelayedgermcelltransformationand a preserved good fertility potential (Cortes etal.,2012). Further researchinthisfieldisthereforeneeded. It has been suggested that testicular biopsy itself at the time oforchidopexyisariskfactorforpostpubertalcancer(Swerdlow etal.,1997).InthereviewbySwerdlowetal.(1997)only9%ofthe operatedtestesweresubjectedtobiopsy,consistentwithapossible selectionbiasbythesurgeon,whomayhaveonlypickedthemore atrophic testes for analysis. This view is supported by a large study of 830 cryptorchid patients having routine biopsy, where therewasnocorrelationbetweenthebiopsyitselfandsubsequent malignancy(Molleretal.,1998). Someauthorshavesuggestedthatadolescentswithaprevious history of cryptorchidism and orchidopexy should be offered a biopsytoidentifyif CISispresent,beforeinvasionhasoccurred (Giwercmanetal.,1989). Alternativescreeningmethodssuchas FIGURE7|Testiculartissuefroma12-month-oldboywithbilateral cryptorchidism.Carcinomainsitu(CIS)issuspected.(A)H&Estaining: reliable blood or semen analysis are not yet available, although Sertolicellsarenormalandthegermcellnumberisattheupperrangefor testicularultrasonographymayhaveaplace(Holmetal.,2001). age.Somegermcellshavetwonuclei,andsomenucleihaveirregular Ultrasonographyshowsarelationshipbetweenmicrolithiasisand morphologyandsomenucleolus.Amicrolithisclearlyseenwithinatubule. CIS, but the significance of this is uncertain (Lenz etal., 1996), (B)StrongPLAPexpressionseeninallgermcells.(C)OCT4expressionin germcellsalsointheperipheryoftubules,whichisnotoftenseenso particularly as more recent studies of testicular microlithiasis impressivelyinmostcryptorchidtestesatasimilarage. showthatitisquitecommoninnormaladolescents(Goedeetal., 2009).CISisalsoassociatedinsomepatientswithcryptorchidism withmultinucleatedgermcells,consistentwithaberrantgermcell surgery in these follow-up studies averaged more than 2 years development(Cortesetal.,2003). old. Inthecontextof theproposal,thatearlygermcelldevelop- There is inconclusive evidence that an early age of surgery mentisthekey,theselong-termresultsareconsistentwitheither leads to a reduction in risk of cancer (Pike etal., 1986; Swerd- noeffectofageatall,orwiththesuggestionthatlackofneonatal low etal., 1997; Wood and Elder, 2009). However, because of gonocyte transformation and impaired apoptosis predisposes to the long lag-time between treatment and outcome, the age at malignancy. www.frontiersin.org January2013|Volume3|Article176|7 “fendo-03-00176” — 2012/12/31 — 11:26 — page 7 — #7 Hutsonetal. Postnatalgermcelldevelopment One of the problems that has bedeviled the relationship the low-temperature scrotal environment. In humans, the testis ◦ betweencryptorchidismandmalignancyisthelackofananimal is at 33 C from birth, so that congenital UDT has the potential model, as rodents with UDT do not develop testicular tumors. todamageneonatalgonocytesbyhightemperature.Bycontrast, Anotherproblemisthatevidenceisaccumulatingthatthereare rodenttestesonlyreachthescrotumafter12daysofage(Bergh, some testes that become undescended after birth, and that this 1991),whichiswellafternormalgonocytetransformationand/or group, now known as acquired cryptorchidism, have a different apoptosisiscomplete(Figure8). riskofmalignancycomparedwithcongenitalUDT. Undescended testis in rodents, therefore, is actually a model for acquired UDT in humans, with high temperature damaging ACQUIREDCRYPTORCHIDISM the SSCs, but with no cancer risk as the gonocytes will have After birth, the distance from the inguinal canal to the scrotum developed or disappeared normally. Once this key difference in increasesfrom4–5to8–10cminearlyadolescence(Smithetal., timingoftesticulardescentisunderstood,extrapolationbetween 1989).Thismeansthatthespermaticcordmustdoubleinlength rodentmodelsandthehumansituationisstraightforward,asother between birth and puberty (Hutson etal., 2010). We have pre- keyprocessesarethesame.Bothspeciesgroupshaveapostnatal viously proposed that failure of this elongation is the cause of “mini-puberty”at3–6monthsinhumansand2–4daysinmice, ascendingtestesoracquiredUDT(HutsonandHasthorpe,2005), whenthereisburstof testicularhormonesandcytokineswhich and this is the likely explanation for many children still having are likely to be involved in gonocyte development. In addition, orchidopexyat5–10years,despiterecommendationsforsurgery gonocytemigrationfromthecenterofthecordstothebasement ininfancy(Donaldsonetal.,1996). membrane to form SSCs is similar in both timing and general Realization that there are two types of UDT has triggered a morphology. re-evaluationof thecauseandeffectof UDT.First, itisbecom- Atemperaturedifferencebetweenundescendedandnormally ing apparent that men who had untreated, acquired UDT have descended testes in rats is not present until after 12 days of age noincreasedcancerrisk,butstillhaveimpairedfertility(Cortes (Zorgniotti,1991),whichiswellafterthegonocytesshouldhave etal.,1998b).Secondly,itmeansthatcurrentlong-termfollow-up transformednormallyintoSSCsorhaveundergoneapoptosis.If studiesinadultsarelikelytocontainamixtureof patientswith excess persisting gonocytes are the cause of CIS and cancer in bothcongenitalandacquiredUDT(Bonneyetal.,2008),making cryptorchidism,thennonewillbepresentinthetestiswhenthe theirinterpretationdifficult. temperature becomes abnormal in rodent UDT,consistent with Investigators have puzzled over why UDT in rodents caused thelackofcancerinthesemodels.However,thehightemperature infertility but not cancer, as in humans. We propose that this oftheUDTwillstilldamageSSCsleadingtosubsequentinfertility is the result of differences in timing in when the testis reaches (Figure8). FIGURE8|Testiculartemperatureinhumansandrodents. acquiredUDTonlyinterfereswithsubsequentsurvivalofstemcells.(B)In (A)Humangonocytesmatureinthefirstyearwhenthetesticular rodents,gonocytesmaturebeforeachangeintemperatureoccurs,sothat temperatureis33◦C.CongenitalUDThaveabnormaltemperature gonocytedevelopmentisunaffected,similartoacquiredUDTin early,whichinterfereswithgonocytedevelopment.Bycontrast, humans. FrontiersinEndocrinology|CancerEndocrinology January2013|Volume3|Article176|8 “fendo-03-00176” — 2012/12/31 — 11:26 — page 8 — #8 Hutsonetal. Postnatalgermcelldevelopment CONCLUDINGREMARKS Therecognitionof acquiredUDTasarealclinicalentityhas All the evidence available points to early germ cell matura- notonlyinformedourunderstandingofthepossiblemanagement tion being the “missing link” in the disconnection between inchildren,butalsoprovidedaninsightintowhyrodentanimal the timing of orchidopexy and the subsequent risks of both models of cryptorchidism do not demonstrate testicular cancer. infertility and malignancy. This suggests that infants getting Inbothcircumstances,theabnormaltemperatureaffectsthetestis really early operation may have significantly improved out- wellaftergonocytematurationorapoptosisiscomplete, sothat comes, although this remains hypothetical. Furthermore, in secondaryheatshockdepressesstemcellfunctionalone,leading some cases supplementary hormonal treatment may be needed toinfertility. to achieve the normal transformation to adult dark spermato- The next few years should help to shed light on these new gonia. developmentsfurther,sothatwecandeterminetheoptimaltreat- Thekeyroleofheatininterferingwiththesignalingthatcon- ment, which may include a differentiated treatment strategy for trolsbothgonocytetransformationand/orapoptosisneedstobe different groups of cryptorchid boys. Equally, the risk of infer- reinvestigated fully, as it is likely to lead to changes in clinical tilityandtesticularcancermaynotbethesameinallboyswith managementofcongenitalcryptorchidism. cryptorchidism. REFERENCES gonocytes.Endocrinology149,6226– Clermont,Y.(1963). Thecycleof the Costoya,J.A.,Hobbs,R.M.,Barna,M., Adham, I. M., and Agoulnik, A. I. 6235. seminiferousepitheliuminman.Am. Cattoretti,G.,Manova,K.,Sukhwani, (2004). Insulin-like 3 signalling in Basciani,S.,Mariani,S.,Spera,G.,and J.Anat.112,35–51. M.,etal.(2004).EssentialroleofPlzf testiculardescent.Int.J.Androl.27, Gnessi, L. (2010). Role of platelet- Cortes, D. (1998). Cryptorchidism – in maintenance of spermatogonial 257–265. derivedgrowthfactorsinthetestis. aspects of pathogenesis, histology stemcells.Nat.Genet.36,653–659. Aksglaede, L., Sorensen, K., Boas, Endocr.Rev.31,916–939. and treatment. Scand. J. Urol. deRooij,D.G.,andRussell,L.D.(2000). M., Mouritsen, A., Hagen, C. Bay,K.,Main,K.M.,Toppari,J.,and Nephrol.Suppl.32,1–56. Allyouwantedtoknowaboutsper- P., Jensen, R. B., etal. (2010). Skakkebaek,N.E.(2011).Testicular Cortes, D., Petersen, B. L., Kirst, K., matogoniabutwereafraidtoask.J. Changesinanti-Müllerianhormone descent: INSL3, testosterone, genes andThorup,J.(2012).EuropeanSoci- Androl.21,776–798. (AMH) throughout the life span: andtheintrauterinemilieu.Nat.Rev. ety for Paediatric Urology Abstract Donaldson, K.M., Tong, S.Y.,Wash- a population-based study of 1027 Urol.8,187–196. Book. Zurich: EuropeanSocietyfor burn,T.,Lubahn,D.B.,Eddy,E.M., healthy males from birth (cord Bergh, A. R. J. (1991). Is testicular PaediatricUrology,p247. Hutson,J.M.,etal.(1996).Morpho- blood)totheageof69years.J.Clin. functioninimmatureratsincreased Cortes, D., Thorup, J. M., Beck, B. metricstudyofthegubernaculumin Endocrinol.Metab.95,5357–5364. rather than decreased by a moder- L., and Visfeldt, J. (1998a). Cryp- maleestrogenreceptormutantmice. Almstrup, K., Hoei-Hansen, C. E., ateincreaseintemperature?Adv.Exp. torchidismasacaudaldevelopmental J.Androl.17,91–95. Wirkner,U.,Blake,J.,Schwager,C., Med.Biol.286,179–182. field defect. A new description of Drumond,A.L.,Meistrich,M.L.,and Ansorge, W., etal. (2004). Embry- Besmer, P., Manova, K., Duttlinger, cryptorchidismassociatedwithmal- Chiarini-Garcia, H. (2001). Sper- onicstemcell-likefeaturesoftestic- R.,Huang,E.J.,Packer,A.,Gyssler, formationsanddysplasiasofthekid- matogonialmorphologyandkinetics ular carcinoma in situ revealed by C., etal. (1993). The kit-ligand neys,theuretersandthespinefrom duringtestisdevelopmentinmice:a genome-widegeneexpressionprofil- (steel factor) and its receptor c- T10toS5.APMIS106,953–958. high-resolution light microscopy ing.CancerRes.64,4736–4743. kit/W:pleiotropicrolesingametoge- Cortes, D., Thorup, J.M.,Visfeldt, J., approach. Reproduction 142, Amann,R.P.,andVeeramachaneni,D. nesisandmelanogenesis.Dev.Suppl. andSchwartz, M.(1998b). Isinfer- 145–155. N.(2007). Cryptorchidismincom- 125–137. tilityaftersurgeryforcryptorchidism Filipponi,D.,Hobbs,R.M.,Ottolenghi, moneutherianmammals.Reproduc- Biers, S. M., and Malone, P. S. congenitaloracquired?Pediatr.Surg. S.,Rossi,P.,Jannini,E.A.,Pandolfi, tion133,541–561. (2010). A critical appraisal of Int.14,6–8. P.P.,etal.(2007).Repressionofkit Asklund,C.,Jorgensen,N.,KoldJensen, the evidence for improved fertil- Cortes, D., Thorup, J. M., and Lin- expressionbyPlzfingermcells.Mol. T., and Skakkebaek, N. E. (2004). ity indices in undescended testes denberg,S.(1996).Fertilitypotential Cell.Biol.27,6770–6781. Biologyandepidemiologyoftestic- after gonadotrophin-releasing hor- after unilateral orchiopexy: an age Forman, D., Pike, M. C., Davey, G., ular dysgenesis syndrome. BJU Int. mone therapy and orchidopexy. J. independentriskofsubsequentinfer- Dawson, S., Baker, K., Chilvers, C. 93(Suppl.3),6–11. Pediatr.Urol.6,239–246. tility when biopsies at surgery lack E.D.,etal.(1994).Aetiologyoftes- Backhouse,K.(1964).Thegubernacu- Bonney, T., Hutson, J., Southwell, B., germcells.J.Urol.156,217–220. ticularcancer:associationwithcon- lumtestishunteri:testiculardescent and Newgreen, D. (2008). Update Cortes,D.,Thorup,J.M.,andVisfeldt, genitalabnormalities,ageatpuberty, andmaldescent. Ann. R.Coll. Surg. oncongenitalversusacquiredunde- J. (2001). Cryptorchidism: aspects infertility, and exercise. BMJ 308, Engl.35,15–33. scended testes: incidence, diagnosis of fertility and neoplasms. A study 1393–1399. Baker, M. L., Metcalfe, S. A., and andmanagement. ANZJ.Surg. 78, including data of 1,335 consecu- Giwercman, A., Bruun, E., Frimodt- Hutson, J. M. (1990). Serum levels 1010–1013. tive boys who underwent testicular Moller, C., and Skakkebaek, N. ofMüllerianinhibitingsubstancein Brinster, R. L. (2007). Male germline biopsy simultaneously with surgery E. (1989). Prevalence of carcinoma boysfrombirthto18years,asdeter- stemcells:frommicetomen.Science for cryptorchidism. Horm. Res. 55, in situ and other histopathological mined by enzyme immunoassay. J. 316,404–405. 21–27. abnormalitiesintestesofmenwith Clin.Endocrinol.Metab.70,11–15. Buaas,F.W.,Kirsh,A.L.,Sharma,M., Cortes,D.,Thorup,J.,andVisfeldt,J. ahistoryofcryptorchidism.J.Urol. Ballow,D.J.,Xin,Y.,Choi,Y.,Pangas,S. McLean,D.J.,Morris,J.L.,Griswold, (2003).Multinucleatedspermatogo- 142,998–1002. A.,andRajkovic,A.(2006). Sohlh2 M.D.,etal.(2004).Plzfisrequired nia in cryptorchid boys: a possible Giwercman,A.,Grindsted,J.,Hansen, is a germ cell-specific bHLH tran- inadultmalegermcellsforstemcell associationwithanincreasedriskof B., Jensen, O. M., and Skakkebaek, scriptionfactor.GeneExpr.Patterns self-renewal.Nat.Genet.36,647–652. testicular malignancy later in life? N. E. (1987). Testicular cancer risk 6,1014–1018. Chilvers, C., Dudley, N. E., Gough, APMIS111,25–30. inboyswithmaldescendedtestis: a Basciani, S., De Luca, G., Dolci, S., M. H., Jackson, M. B., and Pike, Cortes, D., Visfeldt, J., Moller, H., cohortstudy.J.Urol.138,1214–1216. Brama, M., Arizzi, M., Mariani, S., M. C. (1986). Undescended testis: and Thorup, J. (1999). Testicular Goede, J., Hack, W. W. M., van der etal.(2008).Platelet-derivedgrowth theeffectoftreatmentonsubsequent neoplasiaincryptorchidboysatpri- Voort-Doedens, L. M., Sijstermans, factor receptor beta-subtype regu- riskofsubfertilityandmalignancy.J. marysurgery:caseseries.BMJ 319, K., and Pierik, F. H. (2009). Prev- latesproliferationandmigrationof Pediatr.Surg.21,691–696. 888–889. elenceof testicularmicrolithiasisin www.frontiersin.org January2013|Volume3|Article176|9 “fendo-03-00176” — 2012/12/31 — 11:26 — page 9 — #9 Hutsonetal. Postnatalgermcelldevelopment asymptomatic males. J. Urol. 182, germlinestemcells. StemCells 23, Ivell,R.,andHartung,S.(2003). The and Dunkel, L. (2003). Serum 1516–1520. 200–210. molecular basis of cryptorchidism. androgenbioactivityincryptorchid Gracia, J., Sánchez Zalabardo, J., Holm, M., Lenz, S., De Meyts, E. Mol.Hum.Reprod.9,175–181. and noncryptorchid boys during Sánchez García, J., García, C., and R., and Skakkebaek, N. E. (2001). Jegou,B.(1993).TheSertoli–germcell thepostnatalreproductivehormone Ferrández,A.(2000).Clinical,phys- Microcalcificationsandcarcinomain communication network in mam- surge.J.Clin.Endocrinol.Metab.88, ical, sperm and hormonal data in situofthetestis.BJUInt.87,144–149. mals.Int.Rev.Cytol.147,25–96. 2597–2599. 251 adults operated on for cryp- Holstein,A.F.,andKorner,F.(1974). Jensen, M. S., Toft, G., Thulstrup, Rajpert-De Meyts, E., Bartkova, J., torchidisminchildhood.BJUInt.85, Light and electron microscopical A. M., Henriksen, T. B., Olsen, J., Samson, M., Hoei-Hansen, C. E., 1100–1103. analysisofcelltypesinhumansemi- Christensen,K.,etal.(2010).Cryp- Frydelund-Larsen,L.,Bartek,J.,etal. Gross, R. E., and Jewett, T. C. J. noma.VirchowsArch.APathol.Anat. torchidismconcordanceinmonozy- (2003).Theemergingphenotypeof (1956). Surgical experiences from Histol.363,97–112. goticanddizygotictwinbrothers,full thetesticularcarcinomainsitugerm 1,222 operations for undescended Honecker,F.,Stoop,H.,deKrijger,R.R., brothers, and half-brothers. Fertil. cell.APMIS111,267–278. testis.JAMA160,634–641. ChrisLau,Y.F.,Bokemeyer,C.,and Steril.93,124–129. Ritzen,E.M.,Bergh,A.,Bjerknes,R., Hadziselimovic, F. (1983). Cryp- Looijenga, L. H. (2004). Pathobio- Job, J. C., Toublanc, J. E., Chaussain, Christiansen,P.,Cortes,D.,Haugen, torchidism:ManagementandImplica- logicalimplicationsoftheexpression J. L., Gendrel, D., Garnier, P., and S.E.,etal.(2007).Nordicconsensus tions.Berlin:Springer-Verlag. ofmarkersoftesticularcarcinomain Roger, M. (1988). Endocrine and ontreatmentofundescendedtestes. Hadziselimovic,F.(1985).Fertilityand situbyfetalgermcells.J.Pathol.203, immunological findings in cryptor- ActaPaediatr.96,638–643. cryptorchidism. Am. J. Dis. Child. 849–857. chidinfants.Horm.Res.30,167–172. Roosen-Runge, E. C., and Leik, J. 139,963–964. Huckins, C.(1971). Thespermatogo- Lee, M. M., and Donahoe, P. K. (2000).Gonocytedegenerationinthe Hadziselimovic, F., and Herzog, B. nialstemcellpopulationinadultrats. (1993). Müllerian inhibiting sub- postnatalmalerat.Am.J.Anat.122, (2001a).Importanceofearlypostna- 3.Evidenceforalong-cyclingpopu- stance: a gonadal hormone with 275–300. talgermcellmaturationforfertility lation.CellTissueKinet.4,335–349. multiplefunctions. Endocr. Rev. 14, Rorth,M.,Rajpert-DeMeyts,E.,Ander- ofcryptorchidmales.Horm.Res.55, Huff, D. A., Fenig, D. M., Canning, 152–164. sson, L., Dieckmann, K. P., Fosså, 6–10. D. A., Carr, M. G., Zdericm, S. Lenz, S., Skakkebaek, N.E., andHer- S. D., Grigor, K. M., etal. (2000). Hadziselimovic, F., and Herzog, B. A., andSnyder, H.M.III.(2001a). tel, N. T. (1996). Abnormal ultra- Carcinoma in situ in the testis. (2001b). The importance of both Abnormal germ cell development sonic pattern in contralateral testes Scand. J.Urol. Nephrol. Suppl. 205, anearlyorchidopexyandgermcell in cryptorchidism. Horm. Res. 55, inpatientswithunilateraltesticular 166–186. maturationforfertility. Lancet 358, 11–17. cancer. WorldJ.Urol. 14(Suppl. 1), Setchell,B.P.(1998). TheParkesLec- 928–929. Huff, D. S., Snyder, H. M. III, Rus- S55–S58. ture. Heatandthetestis. J.Reprod. Hadziselimovic, F., Herzog, B., and nack, S.L., Zderic, S.A., Carr, M. Mengel,W.,Hienz,H.A.,Sippe,W.G. Fertil.114,179–194. Seguchi, H. (1975). Surgical cor- C., and Canning, D. A. (2001b). II,andHecker,W.C.(1974).Studies Shinohara, T., Avarbock, M. R., and rection of cryptorchism at 2 years: Hormonaltherapyforthesubfertil- oncryptorchidism:acomparisonof Brinster, R. L. (1999). beta1- and electron microscopic and morpho- ityofcryptorchidism.Horm.Res.55, histologicalfindingsinthegermina- alpha6-integrin are surface markers metricinvestigations.J.Pediatr.Surg. 38–40. tiveepitheliumbeforeandafterthe onmousespermatogonialstemcells. 10,19–26. Huff,D.S.,Hadziselimovic,F.,Snyder, secondyearoflife.J.Pediatr.Surg.9, Proc. Natl. Acad. Sci. U.S.A. 96, Hadziselimovic, F., Thommen, L., H.M.III,Blyth,B.,andDuckett,J. 445–450. 5504–5509. Girard, J., and Herzog, B. (1986). W.(1991).Earlypostnataltesticular Mieusset, R., Fonda, P. J., Vaysse, Sinclair,A.(1994).“ThecloningofSRY,” The significance of postnatal maldevelopment in cryptorchidism. P., Guitard, J., Moscovici, J., and inMolecularGeneticsofSexDetermi- gonadotropin surge for testicu- J.Urol.146,624–626. Juskiewenski, S.(1993). Increasein nation,ed.S.S.Wachtel(SanDiego: lar development in normal and Huff,D.S.,Hadziselimovic,F.,Snyder, testiculartemperatureincaseofcryp- AcademicPress),23–40. cryptorchid testes. J. Urol. 136, H.M.III,Duckett,J.W.,andKeat- torchidisminboys.Fertil.Steril.59, Skakkebaek, N. E., Berthelsen, J. 274–276. ing,M.A.(1989).Postnataltesticular 1319–1321. G., Giwercman, A., and Müller, Hadziselimovic, F., and Zivkovic, D. maldevelopment in unilateral cryp- Mirilas, P., Mamoulakis, C., and De J. (1987). Carcinoma-in-situ of the (2007). Is the prohibition of hor- torchidism.J.Urol.142,546–548. Almeida, M. (2003). Puberty does testis:possibleoriginfromgonocytes monaltreatmentforcryptorchidism, Hutson, J., and Beasley, S. (1992). notinduceserumantispermsurface and precursor of all types of germ assuggestedbytheNordicconsensus DescentoftheTestis.London:Edward antibodiesinpatientswithpreviously celltumoursexceptspermatocytoma. group,justifiable?ActaPaediatr.96, Arnold. operatedcryptorchidism.J.Urol.170, Int.J.Androl.10,19–28. 1368–1369. Hutson, J. M., Balic, A., Nation, T., 2432–2435. Skakkebaek,N.E.,Berthelsen,J.G.,and Hao, J., Yamamoto, M., Richardson, and Southwell, B. (2010). Cryp- Moller,H.,Cortes,D.,Engholm,G.,and Muller,J.(1982).Carcinoma-in-situ T. E., Chapman, K. M., Denardm, torchidism.Semin.Pediatr.Surg.19, Thorup,J.(1998).Riskoftesticular oftheundescendedtestis.Urol.Clin. B.S., Hammer, R.E., etal. (2008). 215–224. cancerwithcryptorchidismandwith NorthAm.9,377–385. Sohlh2 knockout mice are male- Hutson, J. M., and Hasthorpe, S. testicularbiopsy:cohortstudy.BMJ Skakkebaek, N. E., Rajpert-De Meyts, sterile because of degeneration of (2005).Testiculardescentandcryp- 317,729. E., Jorgensen, N., Carlsen, E., differentiatingtypeAspermatogonia. torchidism: the state of the art in Oakberg,E.F.(1971).Spermatogonial Petersen,P.M.,Giwercman,A.,etal. StemCells26,1587–1597. 2004.J.Pediatr.Surg.40,297–302. stem-cellrenewalinthemouse.Anat. (1998). Germ cell cancer and dis- Harland,S.J.,Cook,P.A.,Fossa,S.D., Hutson,J.M.,Hasthorpe,S.,andHeyns, Rec.169,515–531. ordersofspermatogenesis: anenvi- Horwich,A., Mead, G.M., Parkin- C.F.(1997). Anatomicalandfunc- Pettersson, A., Richiardi, L., Norden- ronmentalconnection? APMIS106, son,M.C.,etal.(1998).Intratubular tional aspects of testicular descent skjold, A., Kaijser, M., and Akre, 3–11. germcellneoplasiaofthecontralat- andcryptorchidism.Endocr.Rev.18, O.(2007).Ageatsurgeryforunde- Skinner,M.K.(1991). Cell–cellinter- eraltestisintesticularcancer:defin- 259–280. scended testis and risk of testicular actionsinthetestis.Endocr.Rev.12, ingahighriskgroup. J.Urol. 160, Hutson, M. (2010). Commentary cancer. N.Engl. J.Med. 356,1835– 45–77. 1353–1357. on: Biers SM, Malone PS. A crit- 1841. Smith,A.,Hutson,J.M.,Beasley,S.W., Heyns,C.F.,andHutson,J.M.(1995). ical appraisal of the evidence for Pike,M.C.,Chilvers,C.,andPeckham, Reddihough,D.S.,etal.(1989).The Thehistoryoftheoriesontesticular improved fertility indices in unde- M.J.(1986). Effectofageatorchi- relationship between cerebral palsy descent.J.Urol.153,754–767. scendedtestesaftergonadotrophin- dopexy on risk of testicular cancer. andcryptorchidism.J.Pediatr.Surg. Hofmann, M. C., Braydich-Stolle, L., releasing hormone therapy and Lancet1,1246–1248. 24,1303–1305. Dettin, L., Johnson, E., and Dym, orchidopexy. J. Pediatr. Urol. 6, Raivio, T., Toppari, J., Kaleva, M., Swerdlow, A. J., Higgins, C. D., and M.(2005).Immortalizationofmouse 247–248. Virtanen, H., Haavisto, A. M., Pike,M.C.(1997).Riskoftesticular FrontiersinEndocrinology|CancerEndocrinology January2013|Volume3|Article176|10 “fendo-03-00176” — 2012/12/31 — 11:26 — page 10 — #10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.