Advances in Oil and Gas Exploration & Production Leonardo Azevedo Amílcar Soares Geostatistical Methods for Reservoir Geophysics Advances in Oil and Gas Exploration & Production Series editor Rudy Swennen, Department of Earth and Environmental Sciences, K.U. Leuven, Heverlee, Belgium The book series Advances in Oil and Gas Exploration & Production pub- lishes scientific monographs on a broad range of topics concerning geo- physicalandgeologicalresearchonconventionalandunconventionaloiland gas systems, and approaching those topics from both an exploration and a production standpoint. The series is intended to form a diverse library of reference works by describing the current state of research on selected themes,suchascertaintechniquesusedinthepetroleumgeosciencebusiness orregionalaspects.Allbooksin theseries arewrittenand edited byleading experts actively engaged in the respective field. The Advances in Oil and Gas Exploration & Production series includes bothsingle andmulti-authored books,aswell aseditedvolumes.TheSeries Editor, Dr. Rudy Swennen (KU Leuven, Belgium), is currently accepting proposals and a proposal form can be obtained from our representative at Springer, Dr. Alexis Vizcaino ([email protected]). More information about this series at http://www.springer.com/series/15228 Leonardo Azevedo Amílcar Soares (cid:129) Geostatistical Methods for Reservoir Geophysics 123 Leonardo Azevedo Amílcar Soares Instituto Superior Tecnico Instituto Superior Tecnico CERENA CERENA Lisboa Lisboa Portugal Portugal ISSN 2509-372X ISSN 2509-3738 (electronic) Advances in Oil andGasExploration & Production ISBN978-3-319-53200-4 ISBN978-3-319-53201-1 (eBook) DOI 10.1007/978-3-319-53201-1 LibraryofCongressControlNumber:2017930189 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeor part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway, andtransmissionorinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publication does not imply, even in the absence of a specific statement, that such names are exemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationin thisbookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernor the authors or the editors give a warranty, express or implied, with respect to the material containedhereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremains neutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Leonardo Azevedo dedicates the book to his family, friends and all professors who inspired him. Amílcar Soares dedicates the book to his students. Preface The main motivation for writing this book is to report on an existing repertoire of geostatistical methods for handling the integration of geo- physicalinformation inreservoir modelingandfor presenting the successful case studies that validate them. Geostatistical methods were introduced in the 1960s (Matheron 1965) as tools for coping with large amount of similar data and to characterize, for example, grades dispersion in mineral deposits (David 1977; Journel and Huijbreghts 1978). When geostatistical methods become popular for oil reservoir characterization in the 1980s (Deutsch and Journel 1992), the lack of well data made it necessary for another type of data integration in geostatistical methods. Hence, a new paradigm—one based on data inte- gration—developed in geostatistical methods though joint simulations and stochastic sequential simulations with soft data. Since the beginning of this century, oil and gas discoveries have been mainly in deep and ultra-deep waters. Getting to these reservoirs involves ever-higher costs for drilling and well data sampling; it also involves increasedinvestmentinresearchanddevelopment(R&D)tosuccessfullyuse cheaperandmoreefficientgeophysicalexplorationmethods.Therecenthigh qualityofgeophysicaldata,particularlyreflectionseismicdata,representeda breakthroughinreservoirmodelingandcharacterization.However,theuseof 3D and 4D seismic data has been a real challenge for geostatistical data integration methods. Using seismic reflection data, stochastic seismic inversion methods are playing an important role in the characterization of oil and gas reservoirs, which can basically be divided into two groups: the first based on the lin- earized Bayesian approach to seismic inversion (Buland and Omre 2003; Tarantola 2005); the second based on geostatistical inversion methods that are essentially stochastic sequential simulations and optimization processes like genetic algorithms and simulated annealing (Bortolli et al. 1993; Haas and Dubrule 1994; Soares et al. 2007). This book focuses on the geostatistical inversion methods, with Chap. 2 providing an overview of elementary geostatistics. Stochastic simulations and joint simulations are presented in Chap. 3, with the different versions used in the inversion approaches: joint simulation with joint distributions to deal with multivariate inversion and direct inversion and simulation with point distributions to access the data uncertainty. vii viii Preface In Chap. 4 we develop seismic inversion methods—acoustic, elastic and amplitude versus angle (AVA)—within the geostatistical framework. Chapter 5 encompasses the direct inversion of porosity, facies and rock physics models (RPM). Chapter 6 focuses on other methods of geophysical integration, such as joint electromagnetic and seismic inversion and the integrationofseismicinhistorymatchingprocesses:thatis,theintegrationof seismic and dynamic production data in numerical reservoir models. Thisbookisanatural extensionand asummary oftheLisbon University Technical Institute’s (IST—Instituto Superior Técnico) Master of Science programinPetroleumEngineeringnotesonreservoircharacterizationaswell asthoseoftheshortcoursesgivenatotherschoolsandoilcompanies.Weare indebted to all the students whose critiques enriched this book. The seismic inversion methods presented here were developed and implemented at the Centre for Modeling Petroleum Reservoirs research Centre, which is now the Petroleum Group of the Centre for Natural Resources and Environmental Research (CERENA—Centro de Recursos NaturaiseAmbiente).WewouldliketoexpressourthankstoJeanPaulDiet, who introduced us to the concept of geostatistical inversion and helped securefundingfromCGG.WewouldalsoliketothankThierryColleau,who helped steer us in the right direction at the outset, and António Costa Silva, Luís Guerreiro and Carlos Maciel of Partex Oil and Gas, for their encour- agement and support and for helping us find real applications for it in the Middle East. PetrobrasgeophysicistsGuentherNeto,LuciaDillonandEvaldoMundim brought new insights and theirsubstantial experiencetothese methods.Last butnotleast,wewouldliketoexpressourgratitudetothemanyresearchers attheCentreforModelingPetroleumReservoir(CMRP)andourcolleagues and friends, especially Maria João Pereira, Ana Horta, Rúben Nunes, Pedro CorreiaandHugoCaetano,whohavehelpeddevelopthesemethodsoverthe past15yearswithideasdevelopedinthecourseofmanyprojects,thesesand publications. Finally, a special acknowledge to Ângela Pereira, Catarina Marques and Pedro Pereira for the detailed revision of the manuscript and the valuable recommendationsandRúbenNunesforalltheprogrammingrelatedwiththe DSS algorithm. Lisboa, Portugal Leonardo Azevedo Amílcar Soares Contents 1 Introduction—Geostatistical Methods for Integrating Seismic Reflection Data into Subsurface Earth Models. . . . . 1 1.1 Spatial Resolution Gap. . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Seismic Inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Fundamental Geostatistical Tools for Data Integration. . . . . 5 2.1 Spatial Continuity Patterns Analysis and Modeling. . . . . . 6 2.1.1 Bi-point Statistics . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Complex Morphologic Patterns: Auxiliary and Reference Images . . . . . . . . . . . . . 8 2.1.3 Spatial Random Fields. . . . . . . . . . . . . . . . . . . . 8 2.1.4 Variograms and Spatial Covariances . . . . . . . . . . 9 2.1.5 Spatial Representativeness of the Variogram. . . . . 12 2.1.6 Spatial Continuity for Multivariate Systems . . . . . 13 2.1.7 Variogram Modeling Workflow . . . . . . . . . . . . . 15 2.1.8 Theoretical Variogram Models . . . . . . . . . . . . . . 16 2.1.9 Linear Combinations of Variogram Models: Imbricated Structures. . . . . . . . . . . . . . . . . . . . . 18 2.1.10 Co-regionalized Models of Multivariate Systems . . . . . . . . . . . . . . . . . . . 23 2.2 Estimation Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Linear Estimation of Local Statistics . . . . . . . . . . 24 2.2.2 Probabilistic Model of the Geostatistical Linear Estimator . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Kriging Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 Kriging System Resolution. . . . . . . . . . . . . . . . . 27 2.4 Linear Estimation of Non-stationary Phenomena: Simple Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5 Co-kriging Estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Co-estimation with a Secondary Variable in a Much Denser Sample Grid: Collocated Co-kriging . . . . . . . . . . 31 2.7 Estimation of Local Probability Distribution Functions. . . 31 2.7.1 Gaussian Transform of the Experimental Data. . . . 32 2.8 Estimation of Categorical Variables . . . . . . . . . . . . . . . . 33 3 Simulation Models of Physical Phenomena in Earth Sciences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Stochastic Simulation Models . . . . . . . . . . . . . . . . . . . . 37 3.2 Sequential Simulation Models. . . . . . . . . . . . . . . . . . . . 39 ix x Contents 3.3 Sequential Gaussian Simulation. . . . . . . . . . . . . . . . . . . 39 3.4 Direct Sequential Simulation from Experimental Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4.1 Direct Sequential Simulation. . . . . . . . . . . . . . . . 41 3.4.2 Direct Sequential Co-simulation . . . . . . . . . . . . . 42 3.4.3 Stochastic Sequential Co-simulation with Joint Probability Distributions . . . . . . . . . . . 44 3.4.4 Stochastic Simulation with Uncertain Data: DSS with Point Probability Distributions. . . . . . . . . . . 46 3.5 Simulation of Categorical Variables. . . . . . . . . . . . . . . . 47 3.5.1 Indicator Simulation . . . . . . . . . . . . . . . . . . . . . 47 3.5.2 Alternative Simulation Methods for Categorical Variables . . . . . . . . . . . . . . . . . . 49 3.5.3 High-Order Stochastic Simulation of Categorical Variables. . . . . . . . . . . . . . . . . . . 49 4 Integration of Geophysical Data for Reservoir Modeling and Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1 Seismic Inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 Bayesian Framework for Integrating Seismic Reflection Data into Subsurface Earth Models. . . . . . . . . 54 4.3 Iterative Geostatistical Seismic Inversion Methodologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 Frequency Domain of Geostatistical Seismic Inversion . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2 Trace-by-Trace Geostatistical Seismic Inversion Methodologies . . . . . . . . . . . . . . . . . . 57 4.3.3 Global Geostatistical Seismic Inversion Methodologies . . . . . . . . . . . . . . . . . . 58 4.3.4 Global Geostatistical Acoustic Inversion. . . . . . . . 60 4.3.5 Global Geostatistical Elastic Inversion . . . . . . . . . 62 4.3.6 Geostatistical Seismic AVA Inversion . . . . . . . . . 65 4.3.7 Application Example with Geostatistical Seismic AVA Inversion. . . . . . . . . . . . . . . . . . . 72 4.3.8 Seismic Inversion with Structural Local Models . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4 Integration of Low-Frequency Models into Geostatistical Seismic Inverse Methodologies . . . . . . 86 5 Deriving Petrophysical Properties with Seismic Inversion. . . 91 5.1 Characterization of Petrophysical Properties Based on Acoustic and Velocity Models. . . . . . . . . . . . . 91 5.2 Direct Inversion of Porosity Models. . . . . . . . . . . . . . . . 92 5.3 Geostatistical Seismic Inversion Directly for Petrophysical Properties. . . . . . . . . . . . . . . . . . . . . . 95 5.3.1 Geostatistical Seismic AVA Inversion to Facies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.2 Application Examples with Geostatistical Seismic AVA Inversion Directly to Facies . . . . . . 99 5.4 Integration of Rock Physics Models into Geostatistical Seismic Inversion. . . . . . . . . . . . . . . . 106