Geostatistical Applications for Precision Agriculture M.A. Oliver Editor Geostatistical Applications for Precision Agriculture 123 Editor M.A.Oliver VisitingProfessorinSoilScience DepartmentofSoilScience TheUniversityofReading Whiteknights,ReadingRG66DW UnitedKingdom [email protected] ISBN978-90-481-9132-1 e-ISBN978-90-481-9133-8 DOI10.1007/978-90-481-9133-8 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2010931684 ©SpringerScience+BusinessMediaB.V.2010 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Coverlegend:Harvestingavariable-ratenitrogenexperimentonCashmoreField,Silsoe,England. PhotographprovidedbySilsoeResearchinstitute. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thisbookbringstogethertwodynamicsubjects,precisionagricultureandgeostatis- tics,thathavespatialvariationattheircore.Geostatisticsisappliedtomanyaspects of precision agriculture (PA) including sampling, prediction, mapping, decision- making,variable-rateapplications,economicsandsoon.Contributionsfromexperts in several fields of study illustrate how geostatistics can and has been used to ad- vantage with data such as yield, soil, crops, pests, aerial photographs,remote and proximalimagery.Geostatisticaltechniquesappliedincludevariography,ordinary-, disjunctive-,factorial-,indicator-,regression-,simple-,space-time-andco-kriging, andgeostatisticalsimulation.ThisbookwasrequestedbyparticipantsattheSixth EuropeanConferenceon Precision Agriculturein Skiathos,2007becausethe link betweengeostatisticsandPAwillincreaseasmoreintensiveinformationonthesoil andcropsbecomesavailablefromsensorsandon-the-gotechnology.Thisisnota recipebook,butisintendedtoguidereadersintheuseofappropriatetechniquesfor thetypesofdataandneedsofthefarmerinmanagingtheland.Allchaptersinclude oneormorecasestudiestoillustratethetechniques. Chapter 1 sets the scene for the two main topics of the book. The two core techniques of geostatistics, variography and kriging, are described, together with examples of how they can be applied. Sampling for geostatistics is an important issue because it underpins sound results. Chapter 2 considers the importance of spatial scale in sampling, the use of ancillary data, a nested survey and existing variograms of soil or crop properties to guide sampling. Chapter 3 demonstrates thepotentialtooptimizethedesignofsoilsamplingschemesifthevariationofthe target property is represented by a linear mixed model. Chapter 4 describes how calibratedyielddatafrommonitorscanbeusedtotargetcropandsoilinvestigations and nutrient applications, and for on-farm experiments. This chapter uses spatial statisticsratherthanonlygeostatisticsbecauseitlendsitselfbettertoeconometrics. Manyenvironmentalvariablesthatarerelevanttoprecisionagriculture,suchascrop and soil properties and climate, vary in both time and space; Chapter 5 explains the basic elements of space-time geostatistics. Chapter 6 providesan overview of mobile proximal sensors, such as those used to measure apparent soil electrical conductivity (EC /, and how geostatistics can be used to direct soil sampling to a create site-specific managementunits. Three geostatistical methodsto incorporate secondary information into the mapping of soil and crop attributes to improve v vi Preface the accuracy of their predictions are the topic of Chapter 7. For soil and crop propertiesthatrequirecostlysamplingandanalysis,thereareofteninsufficientdata forgeostatisticalanalysesandChapter8showshowmanagementzonescanprovide an interim solution to more comprehensive site-specific management. Weeds and plant-parasiticnematodesoccurinpatchesinagriculturalfields;Chapter9describes howstandardgeostatisticalmethodshavebeenusedsuccessfullytoanalysecounts of both weed seedlings and nematodes in the soil and to map their distributions fromkrigedpredictions.Chapter10showshowgeostatisticscanplayanimportant roleinanalysingexperimentsforsite-specificcropmanagement.Twobroadclasses of experimental design for precision agriculture (management-class experiments and local-response experiments) are considered and how each may be analysed geostatistically. Geostatistical simulation provides a means to mimic the spatial andortemporalvariationofprocessesthatarerelevanttoprecisionagriculture,and Chapter11showshowitcanincorporateuncertaintyintomodellingtoobtainamore realistic impressionof the variation.The bookhasraised severalissues, ideasand questions,whicharesummarizedinChapter 12.Geostatisticsneedstobe tailored bettertotheneedsofthevariousgroupsinvolved;farmers,advisorsandresearchers which have their own particular requirements. The potential for geostatistics and precisionagriculturefortherestofthetwenty-firstcenturyappearsgreat. The Appendix gives examples of software that can be used for geostatistical analyses,andtherearebriefdescriptionsofGenStat,VESPERandSGeMS. Reading,UnitedKingdom MargaretA.Oliver Contents 1 AnOverviewofGeostatisticsandPrecisionAgriculture................. 1 M.A.Oliver 1.1 Introduction............................................................. 1 1.1.1 ABriefHistoryofGeostatistics ............................. 2 1.1.2 ABriefHistoryofPrecisionAgriculture.................... 3 1.1.3 ABriefHistoryofGeostatisticsinPrecisionAgriculture.. 6 1.2 TheTheoryofGeostatistics............................................ 7 1.2.1 Stationarity.................................................... 8 1.2.2 TheVariogram................................................ 9 1.2.3 GeostatisticalPrediction:Kriging ........................... 12 1.3 CaseStudy:FootballField............................................. 18 1.3.1 SummaryStatistics ........................................... 19 1.3.2 Variography................................................... 20 1.3.3 Kriging........................................................ 26 1.3.4 Conclusions................................................... 31 References...................................................................... 32 2 SamplinginPrecisionAgriculture.......................................... 35 R.Kerry,M.A.OliverandZ.L.Frogbrook 2.1 Introduction............................................................. 36 2.1.1 TheImportanceofSpatialScaleforSampling.............. 37 2.1.2 HowCanGeostatisticsHelp?................................ 38 2.1.3 HowcantheVariogrambeUsedtoGuideSampling?...... 39 2.2 VariogramstoGuideSampling........................................ 40 2.2.1 NestedSurveyandAnalysis:ReconnaissanceVariogram.. 40 2.2.2 VariogramsfromAncillaryData............................. 43 2.3 UseoftheVariogramtoGuideSamplingforBulking ............... 47 2.3.1 CaseStudy.................................................... 48 2.4 TheVariogramtoGuideGrid-BasedSampling....................... 51 2.4.1 TheVariogramandKrigingEquations...................... 51 2.4.2 HalftheVariogramRange‘RuleofThumb’ asaGuidetoSamplingInterval.............................. 54 vii viii Contents 2.5 VariogramstoImprovePredictionsfromSparseSampling.......... 55 2.5.1 ResidualMaximumLikelihood(REML) VariogramEstimator.......................................... 55 2.5.2 StandardizedVariograms..................................... 59 2.6 Conclusions............................................................. 61 References...................................................................... 62 3 Sampling in PrecisionAgriculture,OptimalDesigns fromUncertainModels ...................................................... 65 B.P.MarchantandR.M.Lark 3.1 Introduction............................................................. 65 3.2 TheLinearMixedModel:Estimation,Predictions andUncertainty......................................................... 67 3.2.1 TheModel .................................................... 67 3.2.2 Estimation..................................................... 68 3.2.3 Prediction ..................................................... 70 3.2.4 Uncertainty.................................................... 71 3.3 OptimizingSamplingSchemesbySpatial SimulatedAnnealing................................................... 72 3.3.1 SpatialSimulatedAnnealing................................. 72 3.3.2 ObjectiveFunctionsfromtheLMM......................... 73 3.3.3 OptimizedSampleSchemeforSinglePhase GeostatisticalSurveys........................................ 77 3.3.4 AdaptiveExploratorySurveystoEstimate theVariogram................................................. 78 3.4 ACaseStudyinSoilSampling........................................ 81 3.5 Conclusions............................................................. 85 References...................................................................... 86 4 TheSpatialAnalysisofYieldData ......................................... 89 T.W.Griffin 4.1 Introduction............................................................. 89 4.2 BackgroundofSite-SpecificYieldMonitors ......................... 90 4.2.1 ConceptofaYieldMonitor.................................. 93 4.2.2 CalibrationandErrors........................................ 94 4.2.3 CommonUsesofYieldMonitorData....................... 95 4.2.4 ProfitabilityofYieldMonitors............................... 96 4.2.5 QuantityandQualityofProduct............................. 97 4.3 ManagingYieldMonitorData......................................... 97 4.3.1 QualityofYieldMonitorData............................... 97 4.3.2 Challengesin the Use of Yield Data for DecisionMaking..............................................100 4.3.3 AligningSpatiallyDisparateSpatialDataLayers ..........100 4.4 SpatialStatisticalAnalysisofYieldMonitorData ...................101 4.4.1 ExplicitModellingofSpatialEffects........................101 Contents ix 4.4.2 SpatialInteractionStructure .................................103 4.4.3 Empirical Determination of Spatial NeighbourhoodStructure ....................................104 4.5 CaseStudy:SpatialAnalysisofYieldMonitorData fromaField-ScaleExperiment........................................107 4.5.1 CaseStudyData ..............................................107 4.5.2 DataAnalysis.................................................110 4.5.3 CaseStudyResults ...........................................112 4.5.4 CaseStudySummary.........................................112 4.6 Conclusion..............................................................113 References......................................................................113 5 Space–Time Geostatisticsfor PrecisionAgriculture: ACaseStudyofNDVIMappingforaDutchPotatoField...............117 G.B.M.HeuvelinkandF.M.vanEgmond 5.1 Introduction.............................................................117 5.2 Description of the Lauwersmeer Study Site andPositionalCorrectionofNDVIData..............................119 5.3 ExploratoryDataAnalysisofLauwersmeerData....................120 5.4 Space–TimeGeostatistics..............................................125 5.4.1 CharacterizationoftheTrend................................126 5.4.2 CharacterizationoftheStochasticResidual.................126 5.5 Application of Space–Time Geostatistics totheLauwersmeerFarmData........................................128 5.5.1 CharacterizationoftheTrend................................128 5.5.2 CharacterizationoftheStochasticResidual.................130 5.5.3 Space–TimeKriging..........................................131 5.6 DiscussionandConclusions...........................................134 References......................................................................136 6 Delineating Site-Specific Management Units withProximalSensors .......................................................139 D.L.CorwinandS.M.Lesch 6.1 Introduction.............................................................140 6.1.1 TheNeedforSite-SpecificManagement....................140 6.1.2 DefinitionofSite-SpecificManagementUnit(SSMU).....141 6.1.3 ProximalSensors.............................................141 6.1.4 Objective......................................................144 6.2 DirectedSamplingwithaProximalSensor...........................145 6.2.1 Complexity of Proximal Sensor MeasurementsandtheRoleofGeostatistics................145 6.2.2 PracticalConsiderationofDifferencesinSupport..........146 6.3 DelineationofSSMUswithaProximalSensor.......................146 6.3.1 GeostatisticalMixedLinearModel..........................146
Description: