ebook img

Geometry for dummies PDF

411 Pages·2016·10.814 MB·English
by  MarkRyan
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometry for dummies

Geometry 3rd edition by Mark Ryan Geometry For Dummies®, 3rd Edition Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com Copyright © 2016 by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/ permissions. Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book. LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVISE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit www.wiley.com/techsupport. Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com. Library of Congress Control Number: 2016936127 ISBN 978-1-119-18155-2 (pbk); ISBN 978-1-119-18164-4 (ebk); ISBN 978-1-119-18156-9 (ebk) Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 Contents at a Glance Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Part 1: Getting Started with Geometry Basics . . . . . . . . . . . . . . . .5 CHAPTER 1: Introducing Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 CHAPTER 2: Building Your Geometric Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 CHAPTER 3: Sizing Up Segments and Analyzing Angles . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Part 2: Introducing Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 CHAPTER 4: Prelude to Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 CHAPTER 5: Your Starter Kit of Easy Theorems and Short Proofs . . . . . . . . . . . . . . . . .55 CHAPTER 6: The Ultimate Guide to Tackling a Longer Proof . . . . . . . . . . . . . . . . . . . . . 75 Part 3: Triangles: Polygons of the Three-Sided Variety . . . . . 87 CHAPTER 7: Grasping Triangle Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 CHAPTER 8: Regarding Right Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 CHAPTER 9: Completing Congruent Triangle Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Part 4: Polygons of the Four-or-More-Sided Variety . . . . . . . 153 CHAPTER 10: The Seven Wonders of the Quadrilateral World . . . . . . . . . . . . . . . . . . . 155 CHAPTER 11: Proving That You Have a Particular Quadrilateral . . . . . . . . . . . . . . . . . . 177 CHAPTER 12: Polygon Formulas: Area, Angles, and Diagonals . . . . . . . . . . . . . . . . . . . 193 CHAPTER 13: Similarity: Same Shape, Different Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 .11 Part 5: Working with Not-So-Vicious Circles . . . . . . . . . . . . . . . . 235 CHAPTER 14: Coming Around to Circle Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 CHAPTER 15: Circle Formulas and Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 .55 Part 6: Going Deep with 3-D Geometry . . . . . . . . . . . . . . . . . . . . . . 277 CHAPTER 16: 3-D Space: Proofs in a Higher Plane of Existence . . . . . . . . . . . . . . . . . . 279 CHAPTER 17: Getting a Grip on Solid Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Part 7: Placement, Points, and Pictures: Alternative Geometry Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303 CHAPTER 18: Coordinate Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 CHAPTER 19: Changing the Scene with Geometric Transformations . . . . . . . . . . . . . 323 CHAPTER 20: Locating Loci and Constructing Constructions . . . . . . . . . . . . . . . . . . . . 343 Part 8: The Part of Tens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 CHAPTER 21: Ten Things to Use as Reasons in Geometry Proofs . . . . . . . . . . . . . . . . 363 CHAPTER 22: Ten Cool Geometry Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Table of Contents INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 About This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Conventions Used in This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 What You’re Not to Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Foolish Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Icons Used in This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Beyond the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Where to Go from Here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 PART 1: GETTING STARTED WITH GEOMETRY BASICS . . . . . . 5 CHAPTER 1: Introducing Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Studying the Geometry of Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 One-dimensional shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Two-dimensional shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Three-dimensional shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Getting Acquainted with Geometry Proofs . . . . . . . . . . . . . . . . . . . . . . . 10 Easing into proofs with an everyday example . . . . . . . . . . . . . . . . . 11 Turning everyday logic into a proof . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Sampling a simple geometrical proof . . . . . . . . . . . . . . . . . . . . . . . . . 13 When Am I Ever Going to Use This? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 When you’ll use your knowledge of shapes . . . . . . . . . . . . . . . . . . . 14 When you’ll use your knowledge of proofs . . . . . . . . . . . . . . . . . . . . 15 Why You Won’t Have Any Trouble with Geometry . . . . . . . . . . . . . . . . . 16 CHAPTER 2: Building Your Geometric Foundation . . . . . . . . . . . . . . . . 17 Getting Down with Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 A Few Points on Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Lines, Segments, and Rays Pointing Every Which Way . . . . . . . . . . . . . 22 Singling out horizontal and vertical lines . . . . . . . . . . . . . . . . . . . . . . 22 Doubling up with pairs of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Investigating the Plane Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Everybody’s Got an Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Goldilocks and the three angles: Small, large, and just “right” . . . . 26 Angle pairs: Often joined at the hip . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table of Contents v CHAPTER 3: Sizing Up Segments and Analyzing Angles . . . . . . . . . . 31 Measuring Segments and Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Measuring segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Measuring angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Adding and Subtracting Segments and Angles . . . . . . . . . . . . . . . . . . . . 36 Cutting in Two or Three: Bisection and Trisection . . . . . . . . . . . . . . . . . 37 Bisecting and trisecting segments . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Bisecting and trisecting angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Proving (Not Jumping to) Conclusions about Figures . . . . . . . . . . . . . . . 40 PART 2: INTRODUCING PROOFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 CHAPTER 4: Prelude to Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Getting the Lay of the Land: The Components of a Formal Geometry Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Reasoning with If-Then Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 If-then chains of logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 You’ve got your reasons: Definitions, t heorems, and postulates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Bubble logic for two-column proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Horsing Around with a Two-Column Proof . . . . . . . . . . . . . . . . . . . . . . . 52 Your Starter Kit of Easy Theorems CHAPTER 5: and Short Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Doing Right and Going Straight: Complementary and Supplementary Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Addition and Subtraction: Eight No-Big-Deal Theorems . . . . . . . . . . . . 59 Addition theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Subtraction theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Like Multiples and Like Divisions? Then These Theorems Are for You! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 The X-Files: Congruent Vertical Angles Are Out There . . . . . . . . . . . . . . 69 Pulling the Switch with the Transitive and Substitution Properties . . . . 71 CHAPTER 6: The Ultimate Guide to Tackling a Longer Proof . . . . 75 Making a Game Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Using All the Givens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Making Sure You Use If-Then Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Chipping Away at the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Jumping Ahead and Working Backward . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Filling In the Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Writing Out the Finished Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 vi Geometry For Dummies PART 3: TRIANGLES: POLYGONS OF THE THREE-SIDED VARIETY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 CHAPTER 7: Grasping Triangle Fundamentals . . . . . . . . . . . . . . . . . . . . .89 Taking In a Triangle’s Sides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Scalene triangles: Akilter, awry, and askew . . . . . . . . . . . . . . . . . . . . 90 Isosceles triangles: Nice pair o’ legs . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Equilateral triangles: All parts are created equal . . . . . . . . . . . . . . . 92 Introducing the Triangle Inequality Principle . . . . . . . . . . . . . . . . . . . . . 92 Getting to Know Triangles by Their Angles . . . . . . . . . . . . . . . . . . . . . . . 94 Sizing Up Triangle Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Scaling altitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Determining a triangle’s area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 Locating the “Centers” of a Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Balancing on the centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Finding three more “centers” of a triangle . . . . . . . . . . . . . . . . . . . .103 CHAPTER 8: Regarding Right Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Applying the Pythagorean Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Perusing Pythagorean Triple Triangles . . . . . . . . . . . . . . . . . . . . . . . . . 113 The Fab Four Pythagorean triple triangles . . . . . . . . . . . . . . . . . . . 114 Families of Pythagorean triple triangles . . . . . . . . . . . . . . . . . . . . . .116 Getting to Know Two Special Right Triangles . . . . . . . . . . . . . . . . . . . . 118 The 45°- 45°- 90° triangle — half a square . . . . . . . . . . . . . . . . . . . 119 The 30°- 60°- 90° triangle — half of an equilateral triangle . . . . . 120 CHAPTER 9: Completing Congruent Triangle Proofs . . . . . . . . . . . . . 125 Introducing Three Ways to Prove Triangles Congruent . . . . . . . . . . . . 126 SSS: Using the side-side-side method . . . . . . . . . . . . . . . . . . . . . . . 127 SAS: Taking the side-angle-side approach . . . . . . . . . . . . . . . . . . . . 128 ASA: Taking the angle-side-angle tack . . . . . . . . . . . . . . . . . . . . . . . 131 CPCTC: Taking Congruent Triangle Proofs a Step Further . . . . . . . . . .133 Defining CPCTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Tackling a CPCTC proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Eying the Isosceles Triangle Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 137 Trying Out Two More Ways to Prove Triangles Congruent . . . . . . . . . 139 AAS: Using the angle-angle-side theorem . . . . . . . . . . . . . . . . . . . . 139 HLR: The right approach for right triangles . . . . . . . . . . . . . . . . . . .142 Going the Distance with the Two Equidistance Theorems . . . . . . . . . 143 Determining a perpendicular bisector . . . . . . . . . . . . . . . . . . . . . . .144 Using a perpendicular bisector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Making a Game Plan for a Longer Proof . . . . . . . . . . . . . . . . . . . . . . . . 147 Running a Reverse with Indirect Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 149 Table of Contents vii PART 4: POLYGONS OF THE FOUR-OR-MORE-SIDED VARIETY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 CHAPTER 10: The Seven Wonders of the Quadrilateral World . . . . 155 Getting Started with Parallel-Line Properties . . . . . . . . . . . . . . . . . . . . 156 Crossing the line with transversals: D efinitions and theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Applying the transversal theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Working with more than one transversal . . . . . . . . . . . . . . . . . . . . 160 Meeting the Seven Members of the Quadrilateral Family . . . . . . . . . . 161 Looking at quadrilateral relationships . . . . . . . . . . . . . . . . . . . . . . .163 Working with auxiliary lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 Giving Props to Quads: The Properties of Quadrilaterals . . . . . . . . . . 166 Properties of the parallelogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Properties of the three special p arallelograms . . . . . . . . . . . . . . . . 170 Properties of the kite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Properties of the trapezoid and the isosceles trapezoid . . . . . . . . 175 Proving That You Have a Particular CHAPTER 11: Quadrilateral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 Putting Properties and Proof Methods Together . . . . . . . . . . . . . . . . . 178 Proving That a Quadrilateral Is a Parallelogram . . . . . . . . . . . . . . . . . .180 Surefire ways of ID-ing a parallelogram . . . . . . . . . . . . . . . . . . . . . . 180 Trying some parallelogram proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Proving That a Quadrilateral Is a Rectangle, Rhombus, or Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Revving up for rectangle proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Waxing rhapsodic about rhombus proofs . . . . . . . . . . . . . . . . . . . . 187 Squaring off with square proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Proving That a Quadrilateral Is a Kite . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 CHAPTER 12: Polygon Formulas: Area, Angles, and Diagonals . . . . 193 Calculating the Area of Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . .193 Setting forth the quadrilateral area formulas . . . . . . . . . . . . . . . . . 194 Getting behind the scenes of the formulas . . . . . . . . . . . . . . . . . . . 194 Trying a few area problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Finding the Area of Regular Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Presenting polygon area formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Tackling more area problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Using Polygon Angle and Diagonal Formulas . . . . . . . . . . . . . . . . . . . . 205 Interior and exterior design: Exploring polygon angles . . . . . . . . . 206 Handling the ins and outs of a polygon angle problem . . . . . . . . .207 Criss-crossing with diagonals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 viii Geometry For Dummies

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.