ebook img

Geometric Transformations IV: Circular Transformations PDF

294 Pages·2009·4.42 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric Transformations IV: Circular Transformations

Geometric Transformations IV Circular Transformations c 2009by (cid:13) TheMathematicalAssociationofAmerica(Incorporated) LibraryofCongressCatalogCardNumber2009933072 PrinteditionISBN978-0-88385-648-2 ElectroniceditionISBN978-0-88385-958-2 PrintedintheUnitedStatesofAmerica CurrentPrinting(lastdigit): 10987654321 Geometric Transformations IV Circular Transformations I. M. Yaglom Translated by A. Shenitzer PublishedandDistributedby TheMathematicalAssociationofAmerica ANNELILAXNEWMATHEMATICALLIBRARY PUBLISHEDBY THEMATHEMATICALASSOCIATIONOFAMERICA EditorialBoard HaroldP.Boas,Editor SteveAbbott MichaelE.Boardman GailA.Kaplan KatherineS.Socha ANNELILAXNEWMATHEMATICALLIBRARY 1. Numbers:RationalandIrrationalbyIvanNiven 2. WhatisCalculusAbout?byW.W.Sawyer 3. AnIntroductiontoInequalitiesbyE.F.BeckenbachandR.Bellman 4. GeometricInequalitiesbyN.D.Kazarinoff 5. The Contest Problem Book I AnnualHighSchoolMathematicsExaminations 1950–1960.CompiledandwithsolutionsbyCharlesT.Salkind 6. TheLoreofLargeNumbersbyP.J.Davis 7. UsesofInfinitybyLeoZippin 8. GeometricTransformationsIbyI.M.Yaglom,translatedbyA.Shields 9. ContinuedFractionsbyCarlD.Olds 10. ReplacedbyNML-34 11. HungarianProblemBooksIandII,BasedontheEo¨tvo¨sCompetitions 12. 1894–1905and1906–1928,translatedbyE.Rapaport 13. o EpisodesfromtheEarlyHistoryofMathematicsbyA.Aaboe 14. GroupsandTheirGraphsbyE.GrossmanandW.Magnus 15. TheMathematicsofChoicebyIvanNiven 16. FromPythagorastoEinsteinbyK.O.Friedrichs 17. TheContestProblem BookII AnnualHighSchoolMathematicsExaminations 1961–1965.CompiledandwithsolutionsbyCharlesT.Salkind 18. FirstConceptsofTopologybyW.G.ChinnandN.E.Steenrod 19. GeometryRevisitedbyH.S.M.CoxeterandS.L.Greitzer 20. InvitationtoNumberTheorybyOysteinOre 21. GeometricTransformationsIIbyI.M.Yaglom,translatedbyA.Shields 22. ElementaryCryptanalysisbyAbrahamSinkov,revisedandupdatedbyTodd Feil 23. IngenuityinMathematicsbyRossHonsberger 24. GeometricTransformationsIIIbyI.M.Yaglom,translatedbyA.Shenitzer 25. TheContestProblemBookIIIAnnualHighSchoolMathematicsExaminations 1966–1972.CompiledandwithsolutionsbyC.T.SalkindandJ.M.Earl 26. MathematicalMethodsinSciencebyGeorgePo´lya 27. International Mathematical Olympiads—1959–1977. Compiled and with solutionsbyS.L.Greitzer 28. TheMathematicsofGamesandGambling,SecondEditionbyEdwardW. Packel 29. TheContestProblemBookIVAnnualHighSchoolMathematicsExaminations 1973–1982.Compiledandwith solutionsbyR. A. Artino, A. M. Gaglione, andN.Shell 30. TheRoleofMathematicsinSciencebyM.M.SchifferandL.Bowden 31. InternationalMathematicalOlympiads1978–1985andfortysupplementary problems.CompiledandwithsolutionsbyMurrayS.Klamkin 32. RiddlesoftheSphinxbyMartinGardner 33. U.S.A.MathematicalOlympiads1972–1986.Compiledandwithsolutions byMurrayS.Klamkin 34. GraphsandTheir UsesbyOysteinOre.RevisedandupdatedbyRobinJ. Wilson 35. ExploringMathematicswithYourComputerbyArthurEngel 36. GameTheoryandStrategybyPhilipD.Straffin,Jr. 37. EpisodesinNineteenthandTwentiethCenturyEuclideanGeometrybyRoss Honsberger 38. TheContestProblemBookVAmericanHighSchoolMathematicsExaminations andAmericanInvitationalMathematicsExaminations1983–1988.Compiledand augmentedbyGeorgeBerzsenyiandStephenB.Maurer 39. OverandOverAgainbyGengzheChangandThomasW.Sederberg 40. TheContestProblemBookVIAmericanHighSchoolMathematicsExaminations 1989–1994.CompiledandaugmentedbyLeoJ.Schneider 41. The Geometry of Numbers by C. D. Olds, Anneli Lax, and Giuliana P. Davidoff 42. Hungarian Problem Book III, Basedon the Eo¨tvo¨s Competitions1929–1943, translatedbyAndyLiu 43. MathematicalMiniaturesbySvetoslavSavchevandTituAndreescu 44. GeometricTransformationsIVbyI.M.Yaglom,translatedbyA.Shenitzer Othertitlesinpreparation. Booksmaybeorderedfrom: MAAServiceCenter P.O.Box91112 Washington,DC20090-1112 1-800-331-1622 fax:301-206-9789 Contents 1 Reflectioninacircle(inversion) 1 NotestoSection1 . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 Applicationofinversionstothesolutionofconstructions 33 Problems.Constructionswithcompassalone. . . . . . . . . . . 33 Problemsinvolvingtheconstructionofcircles . . . . . . . . . . 35 NotestoSection2 . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 Pencilsofcircles.Theradicalaxisoftwocircles 43 NotestoSection3 . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Inversion(concludingsection) 61 NotestoSection4 . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Axialcirculartransformations 81 A.Dilatation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 B.Axialinversion . . . . . . . . . . . . . . . . . . . . . . . . . 100 NotestoSection5 . . . . . . . . . . . . . . . . . . . . . . . . . 135 Supplement 143 Non-EuclideanGeometryofLobachevski˘ı-Bolyai,orHyperbolic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 143 NotestoSupplement . . . . . . . . . . . . . . . . . . . . . . . 166 Solutions 171 Section1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 vii viii Contents Section2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Section3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Section4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Section5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 AbouttheAuthor 285 1 Reflection in a circle (inversion) ToconstructtheimageA ofapointAbyreflectionina linel weusually 0 proceedasfollows.Wedrawtwocircleswithcentersonl passingthrough A.TherequiredpointA isthesecondpointofintersectionofthetwocircles 0 (Figure1).WesayofA thatitissymmetrictoAwithrespecttol. 0 FIGURE 1 Here weare makinguseofthefactthatallcircleswithcentersonaline l passing through a point A pass also through the point A symmetric to 0 A with respect to l (Figure 2). This fact can be used as a definition of a reflectionina line:PointsAandA are saidtobesymmetric withrespect 0 to a line l if every circle withcenter on l passing through A passes also throughA.ItisclearthatthisdefinitionisequivalenttotheoneinNML8, 0 p.41. Inthissectionweconsiderareflectioninacircle.Thistransformationis analogousinmanyrespectstoareflectioninalineandisoftenusefulinthe solutionofgeometricproblems. 1

Description:
The familiar plane geometry of high school figures composed of lines and circles takes on a new life when viewed as the study of properties that are preserved by special groups of transformations. No longer is there a single, universal geometry: different sets of transformations of the plane corresp
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.