Geometric Transformations IV Circular Transformations c 2009by (cid:13) TheMathematicalAssociationofAmerica(Incorporated) LibraryofCongressCatalogCardNumber2009933072 PrinteditionISBN978-0-88385-648-2 ElectroniceditionISBN978-0-88385-958-2 PrintedintheUnitedStatesofAmerica CurrentPrinting(lastdigit): 10987654321 Geometric Transformations IV Circular Transformations I. M. Yaglom Translated by A. Shenitzer PublishedandDistributedby TheMathematicalAssociationofAmerica ANNELILAXNEWMATHEMATICALLIBRARY PUBLISHEDBY THEMATHEMATICALASSOCIATIONOFAMERICA EditorialBoard HaroldP.Boas,Editor SteveAbbott MichaelE.Boardman GailA.Kaplan KatherineS.Socha ANNELILAXNEWMATHEMATICALLIBRARY 1. Numbers:RationalandIrrationalbyIvanNiven 2. WhatisCalculusAbout?byW.W.Sawyer 3. AnIntroductiontoInequalitiesbyE.F.BeckenbachandR.Bellman 4. GeometricInequalitiesbyN.D.Kazarinoff 5. The Contest Problem Book I AnnualHighSchoolMathematicsExaminations 1950–1960.CompiledandwithsolutionsbyCharlesT.Salkind 6. TheLoreofLargeNumbersbyP.J.Davis 7. UsesofInfinitybyLeoZippin 8. GeometricTransformationsIbyI.M.Yaglom,translatedbyA.Shields 9. ContinuedFractionsbyCarlD.Olds 10. ReplacedbyNML-34 11. HungarianProblemBooksIandII,BasedontheEo¨tvo¨sCompetitions 12. 1894–1905and1906–1928,translatedbyE.Rapaport 13. o EpisodesfromtheEarlyHistoryofMathematicsbyA.Aaboe 14. GroupsandTheirGraphsbyE.GrossmanandW.Magnus 15. TheMathematicsofChoicebyIvanNiven 16. FromPythagorastoEinsteinbyK.O.Friedrichs 17. TheContestProblem BookII AnnualHighSchoolMathematicsExaminations 1961–1965.CompiledandwithsolutionsbyCharlesT.Salkind 18. FirstConceptsofTopologybyW.G.ChinnandN.E.Steenrod 19. GeometryRevisitedbyH.S.M.CoxeterandS.L.Greitzer 20. InvitationtoNumberTheorybyOysteinOre 21. GeometricTransformationsIIbyI.M.Yaglom,translatedbyA.Shields 22. ElementaryCryptanalysisbyAbrahamSinkov,revisedandupdatedbyTodd Feil 23. IngenuityinMathematicsbyRossHonsberger 24. GeometricTransformationsIIIbyI.M.Yaglom,translatedbyA.Shenitzer 25. TheContestProblemBookIIIAnnualHighSchoolMathematicsExaminations 1966–1972.CompiledandwithsolutionsbyC.T.SalkindandJ.M.Earl 26. MathematicalMethodsinSciencebyGeorgePo´lya 27. International Mathematical Olympiads—1959–1977. Compiled and with solutionsbyS.L.Greitzer 28. TheMathematicsofGamesandGambling,SecondEditionbyEdwardW. Packel 29. TheContestProblemBookIVAnnualHighSchoolMathematicsExaminations 1973–1982.Compiledandwith solutionsbyR. A. Artino, A. M. Gaglione, andN.Shell 30. TheRoleofMathematicsinSciencebyM.M.SchifferandL.Bowden 31. InternationalMathematicalOlympiads1978–1985andfortysupplementary problems.CompiledandwithsolutionsbyMurrayS.Klamkin 32. RiddlesoftheSphinxbyMartinGardner 33. U.S.A.MathematicalOlympiads1972–1986.Compiledandwithsolutions byMurrayS.Klamkin 34. GraphsandTheir UsesbyOysteinOre.RevisedandupdatedbyRobinJ. Wilson 35. ExploringMathematicswithYourComputerbyArthurEngel 36. GameTheoryandStrategybyPhilipD.Straffin,Jr. 37. EpisodesinNineteenthandTwentiethCenturyEuclideanGeometrybyRoss Honsberger 38. TheContestProblemBookVAmericanHighSchoolMathematicsExaminations andAmericanInvitationalMathematicsExaminations1983–1988.Compiledand augmentedbyGeorgeBerzsenyiandStephenB.Maurer 39. OverandOverAgainbyGengzheChangandThomasW.Sederberg 40. TheContestProblemBookVIAmericanHighSchoolMathematicsExaminations 1989–1994.CompiledandaugmentedbyLeoJ.Schneider 41. The Geometry of Numbers by C. D. Olds, Anneli Lax, and Giuliana P. Davidoff 42. Hungarian Problem Book III, Basedon the Eo¨tvo¨s Competitions1929–1943, translatedbyAndyLiu 43. MathematicalMiniaturesbySvetoslavSavchevandTituAndreescu 44. GeometricTransformationsIVbyI.M.Yaglom,translatedbyA.Shenitzer Othertitlesinpreparation. Booksmaybeorderedfrom: MAAServiceCenter P.O.Box91112 Washington,DC20090-1112 1-800-331-1622 fax:301-206-9789 Contents 1 Reflectioninacircle(inversion) 1 NotestoSection1 . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 Applicationofinversionstothesolutionofconstructions 33 Problems.Constructionswithcompassalone. . . . . . . . . . . 33 Problemsinvolvingtheconstructionofcircles . . . . . . . . . . 35 NotestoSection2 . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 Pencilsofcircles.Theradicalaxisoftwocircles 43 NotestoSection3 . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Inversion(concludingsection) 61 NotestoSection4 . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Axialcirculartransformations 81 A.Dilatation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 B.Axialinversion . . . . . . . . . . . . . . . . . . . . . . . . . 100 NotestoSection5 . . . . . . . . . . . . . . . . . . . . . . . . . 135 Supplement 143 Non-EuclideanGeometryofLobachevski˘ı-Bolyai,orHyperbolic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 143 NotestoSupplement . . . . . . . . . . . . . . . . . . . . . . . 166 Solutions 171 Section1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 vii viii Contents Section2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Section3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Section4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Section5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 AbouttheAuthor 285 1 Reflection in a circle (inversion) ToconstructtheimageA ofapointAbyreflectionina linel weusually 0 proceedasfollows.Wedrawtwocircleswithcentersonl passingthrough A.TherequiredpointA isthesecondpointofintersectionofthetwocircles 0 (Figure1).WesayofA thatitissymmetrictoAwithrespecttol. 0 FIGURE 1 Here weare makinguseofthefactthatallcircleswithcentersonaline l passing through a point A pass also through the point A symmetric to 0 A with respect to l (Figure 2). This fact can be used as a definition of a reflectionina line:PointsAandA are saidtobesymmetric withrespect 0 to a line l if every circle withcenter on l passing through A passes also throughA.ItisclearthatthisdefinitionisequivalenttotheoneinNML8, 0 p.41. Inthissectionweconsiderareflectioninacircle.Thistransformationis analogousinmanyrespectstoareflectioninalineandisoftenusefulinthe solutionofgeometricproblems. 1
Description: