Table Of ContentGeometric Transformations IV
Circular Transformations
c 2009by
(cid:13)
TheMathematicalAssociationofAmerica(Incorporated)
LibraryofCongressCatalogCardNumber2009933072
PrinteditionISBN978-0-88385-648-2
ElectroniceditionISBN978-0-88385-958-2
PrintedintheUnitedStatesofAmerica
CurrentPrinting(lastdigit):
10987654321
Geometric Transformations IV
Circular Transformations
I. M. Yaglom
Translated by
A. Shenitzer
PublishedandDistributedby
TheMathematicalAssociationofAmerica
ANNELILAXNEWMATHEMATICALLIBRARY
PUBLISHEDBY
THEMATHEMATICALASSOCIATIONOFAMERICA
EditorialBoard
HaroldP.Boas,Editor
SteveAbbott
MichaelE.Boardman
GailA.Kaplan
KatherineS.Socha
ANNELILAXNEWMATHEMATICALLIBRARY
1. Numbers:RationalandIrrationalbyIvanNiven
2. WhatisCalculusAbout?byW.W.Sawyer
3. AnIntroductiontoInequalitiesbyE.F.BeckenbachandR.Bellman
4. GeometricInequalitiesbyN.D.Kazarinoff
5. The Contest Problem Book I AnnualHighSchoolMathematicsExaminations
1950–1960.CompiledandwithsolutionsbyCharlesT.Salkind
6. TheLoreofLargeNumbersbyP.J.Davis
7. UsesofInfinitybyLeoZippin
8. GeometricTransformationsIbyI.M.Yaglom,translatedbyA.Shields
9. ContinuedFractionsbyCarlD.Olds
10. ReplacedbyNML-34
11. HungarianProblemBooksIandII,BasedontheEo¨tvo¨sCompetitions
12. 1894–1905and1906–1928,translatedbyE.Rapaport
13. o EpisodesfromtheEarlyHistoryofMathematicsbyA.Aaboe
14. GroupsandTheirGraphsbyE.GrossmanandW.Magnus
15. TheMathematicsofChoicebyIvanNiven
16. FromPythagorastoEinsteinbyK.O.Friedrichs
17. TheContestProblem BookII AnnualHighSchoolMathematicsExaminations
1961–1965.CompiledandwithsolutionsbyCharlesT.Salkind
18. FirstConceptsofTopologybyW.G.ChinnandN.E.Steenrod
19. GeometryRevisitedbyH.S.M.CoxeterandS.L.Greitzer
20. InvitationtoNumberTheorybyOysteinOre
21. GeometricTransformationsIIbyI.M.Yaglom,translatedbyA.Shields
22. ElementaryCryptanalysisbyAbrahamSinkov,revisedandupdatedbyTodd
Feil
23. IngenuityinMathematicsbyRossHonsberger
24. GeometricTransformationsIIIbyI.M.Yaglom,translatedbyA.Shenitzer
25. TheContestProblemBookIIIAnnualHighSchoolMathematicsExaminations
1966–1972.CompiledandwithsolutionsbyC.T.SalkindandJ.M.Earl
26. MathematicalMethodsinSciencebyGeorgePo´lya
27. International Mathematical Olympiads—1959–1977. Compiled and with
solutionsbyS.L.Greitzer
28. TheMathematicsofGamesandGambling,SecondEditionbyEdwardW.
Packel
29. TheContestProblemBookIVAnnualHighSchoolMathematicsExaminations
1973–1982.Compiledandwith solutionsbyR. A. Artino, A. M. Gaglione,
andN.Shell
30. TheRoleofMathematicsinSciencebyM.M.SchifferandL.Bowden
31. InternationalMathematicalOlympiads1978–1985andfortysupplementary
problems.CompiledandwithsolutionsbyMurrayS.Klamkin
32. RiddlesoftheSphinxbyMartinGardner
33. U.S.A.MathematicalOlympiads1972–1986.Compiledandwithsolutions
byMurrayS.Klamkin
34. GraphsandTheir UsesbyOysteinOre.RevisedandupdatedbyRobinJ.
Wilson
35. ExploringMathematicswithYourComputerbyArthurEngel
36. GameTheoryandStrategybyPhilipD.Straffin,Jr.
37. EpisodesinNineteenthandTwentiethCenturyEuclideanGeometrybyRoss
Honsberger
38. TheContestProblemBookVAmericanHighSchoolMathematicsExaminations
andAmericanInvitationalMathematicsExaminations1983–1988.Compiledand
augmentedbyGeorgeBerzsenyiandStephenB.Maurer
39. OverandOverAgainbyGengzheChangandThomasW.Sederberg
40. TheContestProblemBookVIAmericanHighSchoolMathematicsExaminations
1989–1994.CompiledandaugmentedbyLeoJ.Schneider
41. The Geometry of Numbers by C. D. Olds, Anneli Lax, and Giuliana P.
Davidoff
42. Hungarian Problem Book III, Basedon the Eo¨tvo¨s Competitions1929–1943,
translatedbyAndyLiu
43. MathematicalMiniaturesbySvetoslavSavchevandTituAndreescu
44. GeometricTransformationsIVbyI.M.Yaglom,translatedbyA.Shenitzer
Othertitlesinpreparation.
Booksmaybeorderedfrom:
MAAServiceCenter
P.O.Box91112
Washington,DC20090-1112
1-800-331-1622 fax:301-206-9789
Contents
1 Reflectioninacircle(inversion) 1
NotestoSection1 . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 Applicationofinversionstothesolutionofconstructions 33
Problems.Constructionswithcompassalone. . . . . . . . . . . 33
Problemsinvolvingtheconstructionofcircles . . . . . . . . . . 35
NotestoSection2 . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Pencilsofcircles.Theradicalaxisoftwocircles 43
NotestoSection3 . . . . . . . . . . . . . . . . . . . . . . . . . 59
4 Inversion(concludingsection) 61
NotestoSection4 . . . . . . . . . . . . . . . . . . . . . . . . . 77
5 Axialcirculartransformations 81
A.Dilatation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.Axialinversion . . . . . . . . . . . . . . . . . . . . . . . . . 100
NotestoSection5 . . . . . . . . . . . . . . . . . . . . . . . . . 135
Supplement 143
Non-EuclideanGeometryofLobachevski˘ı-Bolyai,orHyperbolic
Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 143
NotestoSupplement . . . . . . . . . . . . . . . . . . . . . . . 166
Solutions 171
Section1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
vii
viii Contents
Section2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Section3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Section4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Section5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
AbouttheAuthor 285
1
Reflection in a circle (inversion)
ToconstructtheimageA ofapointAbyreflectionina linel weusually
0
proceedasfollows.Wedrawtwocircleswithcentersonl passingthrough
A.TherequiredpointA isthesecondpointofintersectionofthetwocircles
0
(Figure1).WesayofA thatitissymmetrictoAwithrespecttol.
0
FIGURE 1
Here weare makinguseofthefactthatallcircleswithcentersonaline
l passing through a point A pass also through the point A symmetric to
0
A with respect to l (Figure 2). This fact can be used as a definition of a
reflectionina line:PointsAandA are saidtobesymmetric withrespect
0
to a line l if every circle withcenter on l passing through A passes also
throughA.ItisclearthatthisdefinitionisequivalenttotheoneinNML8,
0
p.41.
Inthissectionweconsiderareflectioninacircle.Thistransformationis
analogousinmanyrespectstoareflectioninalineandisoftenusefulinthe
solutionofgeometricproblems.
1
Description:The familiar plane geometry of high school figures composed of lines and circles takes on a new life when viewed as the study of properties that are preserved by special groups of transformations. No longer is there a single, universal geometry: different sets of transformations of the plane corresp