ebook img

Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing PDF

753 Pages·2019·10.97 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing

Eduardo Bayro-Corrochano Geometric Algebra Applications Vol. I Computer Vision, Graphics and Neurocomputing 123 Geometric Algebra Applications Vol. I Eduardo Bayro-Corrochano Geometric Algebra Applications Vol. I Computer Vision, Graphics and Neurocomputing 123 Eduardo Bayro-Corrochano Electrical Engineering and Computer ScienceDepartment CINVESTAV, CampusGuadalajara Jalisco, Mexico ISBN978-3-319-74828-3 ISBN978-3-319-74830-6 (eBook) https://doi.org/10.1007/978-3-319-74830-6 LibraryofCongressControlNumber:2018937319 ©SpringerInternationalPublishingAG,partofSpringerNature2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland My Three Dedication Strophes I. To the social fighters Nelson Mandela who achieved the elimination of the African apartheid and Evo Morales Aima who worked to eliminate the Andean Indian apartheid according the quechua saying Ama Sua, Ama Qhella, Ama Llulla, Ama Llunk’a. II. To all scientists who do not work for the development of weapons and technology destined to occupy and dominate countries; for all who work for education, health, preservation of the environment and social justice. III. To my beloved wife Joanna Jablonska and my first wife Mechthild Kaiser for their constant and patient support during all these years of my scientific work; and to my adored children: Esteban, Fabio, Vinzenz, Silvana, Nikolai, Claudio and Gladys. Preface This book presents the theory and applications of an advanced mathematical lan- guagecalledgeometricalgebrathatgreatlyhelpstoexpresstheideasandconcepts and to develop algorithms in the broad domain of robot physics. In the history of science, without essential mathematical concepts, theories wouldhavenotbeendevelopedatall.Wecanobservethatinvariousperiodsofthe historyofmathematicsandphysics,certainstagnationoccurred;fromtimetotime, thanks to new mathematical developments, astonishing progress took place. In addition,weseethattheknowledgebecameunavoidablyfragmentedasresearchers attempted to combine different mathematical systems. Each mathematical system bringsaboutsomepartsofgeometry;however,together,thesesystemsconstitutea highly redundant system due to an unnecessary multiplicity of representations for geometricconcepts.Theauthorexpectsthatduetohispersistenteffortstobringto thecommunitygeometricalgebraforapplicationsasametalanguageforgeometric reasoning, in the near future tremendous progress in computer vision, machine learning, and robotics should take place. What is geometric algebra? Why is its application so promising? Why should researchers, practitioners, and students make the effort to understand geometric algebra and use it? We want to answer all these questions and convince the reader that becoming acquainted with geometric algebra for applications is a worthy undertaking. The history of geometric algebra is unusual and quite surprising. In the 1870s, WilliamKingdonCliffordintroducedhisgeometricalgebra,buildingontheearlier works of Sir William Rowan Hamilton and Hermann Gunther Grassmann. In Clifford’s work, we perceive that he intended to describe the geometric properties of vectors, planes, and higher-dimensional objects. Most physicists encounter the algebra in the guise of Pauli and Dirac matrix algebras of quantum theory. Many roboticists or computer graphic engineers use quaternions for 3D rotation estima- tionandinterpolation,asapointwiseapproachistoodifficultforthemtoformulate homogeneoustransformationsofhigh-ordergeometricentities.Theyresortoftento tensorcalculusformultivariablecalculus.Sinceroboticsandengineeringmakeuse of the developments of mathematical physics, many beliefs are automatically vii viii Preface inherited; for instance, some physicists come away from a study of Dirac theory withtheviewthatClifford’salgebraisinherentlyquantummechanical.Thegoalof this book is to eliminate these kinds of beliefs by giving a clear introduction of geometricalgebraandshowingthisnewandpromisingmathematicalframeworkto multivectors and geometric multiplication in higher dimensions. In this new geo- metric language, most of the standard matter taught to roboticists and computer scienceengineerscanbeadvantageouslyreformulatedwithoutredundanciesandin a highly condensed fashion. The geometric algebra allows us to generalize and transfer concepts and techniques to a wide range of domains with little extra conceptual work. Leibniz dreamed of a geometric calculus system that deals directly with geometric objects rather than with sequences of numbers. It is clear that by increasing the dimension of the geometric space and the generalization of the transformation group, the invariance of the operations with respect to a reference frame will be more and more difficult. Leibniz’s invariance dream is fulfilled for the nD classical geometries using the coordinate-free framework of geometric algebra. The aim of this book is precise and well planned. It is not merely an expose of mathematicaltheory;rather,theauthorintroducesthetheoryandnewtechniquesof geometricalgebra,albeit byshowingtheirapplicationsindiversedomains ranging from neurocomputing and robotics to medical image processing. Guadalajara, Mexico Prof. Eduardo Bayro-Corrochano August 2017 Acknowledgements Eduardo José Bayro-Corrochano would like to thank the Center for Research and AdvancedStudies(CINVESTAV,Guadalajara,Mexico)andtheConsejoNacional deCienciayTecnologίa(SEP-CONACYT,Mexico)fortheirsupportofthisproject. IamalsoverygratefultomyformerPh.D.studentsJulioZamora-Esquivel,Nancy Arana-Daniel, Jorge Rivera Rovelo, Leo Reyes Hendrick, Luis Eduardo Falcón, Carlos López-Franco, Rubén Machucho Cadena, Eduardo Ulises Moya-Sáanchez, Eduardo Vázquez, Gehová López-González, Gerardo Altamirano-Gómez, and Oscar Carbajal-Espinoza for fruitful discussions and technical cooperation. Their creative suggestions, criticism, and patient research work were decisive for the completion of this book. In the geometric algebra community, first of all I am indebted to David Hestenes for all his amazing work in developing the modern subject of geometric algebra and his constant encouragement to me for tackling problems in robot physics. Also, I am very thankful to Garret Sobczyk, Rafal Ablamowicz, Anthony Lasenby, Eckard Hitzer, Dietmar Hildebrand, and Joan Lasenbyfortheirsupportandconstructivesuggestions.Finally,Iamverythankful to the Mexican people, who pay my salary, which made it possible for me to accomplish this contributionto scientific knowledge. ix Contents 1 Geometric Algebra for the Twenty-First Century Cybernetics . . . . 1 1.1 Cybernetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Roots of Cybernetics. . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Contemporary Cybernetics. . . . . . . . . . . . . . . . . . . 2 1.1.3 Cybernetics and Related Fields . . . . . . . . . . . . . . . 2 1.1.4 Cybernetics and Geometric Algebra . . . . . . . . . . . . 3 1.2 The Roots of Geometry and Algebra . . . . . . . . . . . . . . . . . . . 3 1.3 Geometric Algebra a Unified Mathematical Language. . . . . . . 5 1.4 What does Geometric Algebra Offer for Geometric Computing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.1 Coordinate-Free Mathematical System . . . . . . . . . . 7 1.4.2 Models for Euclidean and PseudoEuclidean Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.3 Subspaces as Computing Elements. . . . . . . . . . . . . 9 1.4.4 Representation of Orthogonal Transformations . . . . 9 1.4.5 Objects and Operators. . . . . . . . . . . . . . . . . . . . . . 10 1.4.6 Extension of Linear Transformations . . . . . . . . . . . 11 1.4.7 Signals and Wavelets in the Geometric Algebra Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.8 Kinematics and Dynamics . . . . . . . . . . . . . . . . . . . 12 1.5 Solving Problems in Perception and Action Systems. . . . . . . . 12 Part I Fundamentals of Geometric Algebra 2 Introduction to Geometric Algebra. . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 History of Geometric Algebra . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 What is Geometric Algebra? . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 Basic Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.2 Non-orthonormal Frames and Reciprocal Frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 xi xii Contents 2.2.3 Reciprocal Frames with Curvilinear Coordinates. . . 26 2.2.4 Some Useful Formulas . . . . . . . . . . . . . . . . . . . . . 27 2.3 Multivector Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 Further Properties of the Geometric Product . . . . . . 30 2.3.2 Projections and Rejections. . . . . . . . . . . . . . . . . . . 32 2.3.3 Projective Split . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.4 Generalized Inner Product . . . . . . . . . . . . . . . . . . . 33 2.3.5 Geometric Product of Multivectors. . . . . . . . . . . . . 35 2.3.6 Contractions and the Derivation. . . . . . . . . . . . . . . 36 2.3.7 Hodge Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.8 Dual Blades and Duality in the Geometric Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4 Multivector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.1 Involution, Reversion and Conjugation Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.2 Join and Meet Operations . . . . . . . . . . . . . . . . . . . 42 2.4.3 Multivector-valued Functions and the Inner Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.4 The Multivector Integral . . . . . . . . . . . . . . . . . . . . 44 2.4.5 Convolution and Correlation of Scalar Fields . . . . . 44 2.4.6 Clifford Convolution and Correlation . . . . . . . . . . . 45 2.5 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5.1 Linear Algebra Derivations . . . . . . . . . . . . . . . . . . 47 2.6 Simplexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 Differentiation, Linear, and Multilinear Functions in Geometric Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1 Differentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.1 Differentiation by Vectors . . . . . . . . . . . . . . . . . . . 56 3.1.2 Differential Identities. . . . . . . . . . . . . . . . . . . . . . . 60 3.1.3 Multivector Derivatives, Differentials, and Adjoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2 Linear Multivector Functions. . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 The Determinant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Adjoints and Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5 Eigenvectors and Eigenblades . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6 Symmetric and Skew-Symmetric Transformations. . . . . . . . . . 73 3.7 Traction Operators: Contraction and Protraction . . . . . . . . . . . 74 3.8 Tensors in Geometric Algebra . . . . . . . . . . . . . . . . . . . . . . . . 76 3.8.1 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.8.2 Orthonormal Frames and Cartesian Tensors . . . . . . 79 3.8.3 Non-orthonormal Frames and General Tensors . . . . 81 3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.